Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Are Arctic Ocean ecosystems exceptionally vulnerable to global emissions of mercury? A call for emphasised research on methylation and the consequences of climate change

R. W. Macdonald A C and L. L. Loseto B
+ Author Affiliations
- Author Affiliations

A Department of Fisheries and Oceans, Institute of Ocean Sciences, PO Box 6000, Sidney, BC, V8L 4B2, Canada.

B Department of Fisheries and Oceans, Freshwater Institute, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada.

C Corresponding author. Email: robie.macdonald@dfo-mpo.gc.ca

Environmental Chemistry 7(2) 133-138 https://doi.org/10.1071/EN09127
Submitted: 8 October 2009  Accepted: 16 January 2010   Published: 22 April 2010

Environmental context. Mercury is a global contaminant that has entered Arctic food webs in sufficient quantity to put at risk the health of top predators and humans that consume them. Recent research has discovered a photochemical process unique to the Arctic that leads to mercury deposition on frozen surfaces after polar sunrise, but the connection between mercury deposition and entry into food webs remains tenuous and poorly understood. We propose here that the Arctic Ocean’s sensitivity to the global mercury cycle depends far more on neglected post-deposition processes that lead to methylation within the ice–ocean system, and the vulnerability of these processes to changes occurring in the cryosphere.

Abstract. Emissions, atmospheric transport and deposition have formed the emphasis of recent research to understand Hg trends in Arctic marine biota, with the expressed objective of predicting how biotic trends might respond to emission controls. To answer the question of whether the Arctic Ocean might be especially vulnerable to global mercury (Hg) contamination and how biota might respond to emission controls requires a distinction between the supply of Hg from source regions and the processes within the Arctic Ocean that sequester and convert mercury to monomethyl Hg (MeHg). Atmospheric Mercury Depletion Events (AMDEs) provide a unique Hg deposition process in the Arctic; however, AMDEs have yet to be linked quantitatively with Hg uptake in marine food webs. The difficulty in implicating AMDEs or emissions to biotic trends lie in the ocean where several poorly understood processes lead to MeHg production and biomagnification. We propose that sensitivity of the Arctic Ocean’s ecosystem to Hg lies not so much in the deposition process as in methylation processes within the ocean, Hg inputs from large drainage basins, and the vulnerability these to climate change. Future research needs to be better balanced across the entire Hg cycle.


Acknowledgements

This article is based on a keynote presentation given at the 2009 Goldschmidt conference. We thank A. Green for encouraging us to focus our ideas in this paper, and three anonymous reviewers for providing constructive comments on an earlier version. Both authors appreciate financial support from the Northern Contaminants Program (NCP), ArcticNet and NSERC for a Postdoctoral Fellowship to L. Loseto. The perspectives presented here reflect the influence of a long association with colleagues who have re-written Arctic contaminant science.


References


[1]   AMAP, AMAP Assessment Report: Arctic Pollution Issues 1998 (Arctic Monitoring and Assessment Programme: Oslo, Norway).

[2]   S. Booth , D. Zeller , Mercury, food webs, and marine mammals: implications of diet and climate change for human health. Environ. Health Perspect. 2005 , 113,  521.
        |  CAS | PubMed |  open url image1

[3]   J. Van Oostdam , S. G. Donaldson , M. Feely , D. Arnold , P. Ayotte , G. Bondy , L. Chan , E. Dewaily , et al. Human health implications of environmental contaminants in Arctic Canada: a review. Sci. Total Environ. 2005 , 351–352,  165.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   W. H. Schroeder , K. G. Anlauf , L. A. Barrie , J. Y. Lu , A. Steffen , D. R. Schneeberger , T. Berg , Arctic springtime depletion of mercury. Nature 1998 , 394,  331.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[5]   S. E. Lindberg , S. Brooks , C.-J. Lin , K. J. Scott , M. S. Landis , R. K. Stevens , M. Goodsite , A. Richter , Dynamic oxidation of gaseous mercury in the arctic troposphere at polar sunrise. Environ. Sci. Technol. 2002 , 36,  1245.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   A. Steffen , T. Douglas , M. Amyot , P. A. Ariya , K. Aspmo , T. Bergm , J. Bottenheim , S. Brooks , et al. A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water. Atmos. Chem. Phys. 2008 , 8,  1445.
        |  CAS |  open url image1

[7]   J. O. Nriagu , J. M. Pacyna , Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988 , 333,  134.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[8]   W. F. Fitzgerald , C. H. Lamborg , C. R. Hammerschmidt , Marine biogeochemical cycling of mercury. Chem. Rev. 2007 , 107,  641.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[9]   D. Mergler , H. A. Anderson , L. H. M. Chan , K. R. Mahaffey , M. Murray , M. Sakamoto , A. H. Stern , Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 2007 , 36,  3.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[10]   E. M. Sunderland , R. P. Mason , Human impacts on open ocean mercury concentrations. Global Biogeochem. Cycles 2007 , 21,  GB4022.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   P. M. Outridge , R. W. Macdonald , F. Wang , G. A. Stern , A. P. Dastoor , A mass balance inventory of mercury in the Arctic Ocean. Environ. Chem. 2008 , 5,  89.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[12]   M. C. Serreze , A. P. Barrett , A. G. Slater , R. A. Woodgate , K. Aagaard , R. B. Lammers , M. Steele , R. Moritz , et al. The large-scale freshwater cycle of the Arctic. J. Geophys. Res. 2006 , 111,  C11010.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   Stein R., Macdonald R. W., The Organic Carbon Cycle in the Arctic Ocean 2004 (Springer: New York).

[14]   E. B. Swain , P. M. Jakus , G. Rice , F. Lupi , P. A. Maxson , J. M. Pacyna , A. Penn , S. J. Spiegel , et al. Socioeconomic consequences of mercury use and pollution. Ambio 2007 , 36,  45.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[15]   C. Li , J. Cornett , S. Willie , J. Lam , Mercury in Arctic air: the long-term trend. Sci. Total Environ. 2009 , 407,  2756.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   A. Steffen , W. Schroeder , R. W. Macdonald , L. Poissant , A. Konoplev , Mercury in the arctic atmosphere: an analysis of eight years of measurements of GEM at Alert (Canada) and a comparison with observations at Amderma (Russia) and Kuujjuarapik (Canada). Sci. Total Environ. 2005 , 342,  185.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   W. L. Lockhart , G. A. Stern , R. Wagemann , R. V. Hunt , D. A. Metner , J. DeLaronde , B. Dunn , R. E. A. Stewart , et al. Concentrations and trends of mercury in tissues of beluga whales (Delphinapterus leucas) from the Canadian Arctic from 1981 to 2002. Sci. Total Environ. 2005 , 351–352,  391.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   B. M. Braune , Temporal trends of organochlorines and mercury in seabird eggs from the Canadian Arctic, 1975–2003. Environ. Pollut. 2007 , 148,  599.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[19]   P. M. Outridge , H. Sanei , G. A. Stern , P. B. Hamilton , F. Goodarzi , Evidence for control of mercury accumulation rates in Canadian high arctic lake sediments by variations in aquatic primary productivity. Environ. Sci. Technol. 2007 , 41,  5259.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[20]   R. W. Macdonald , T. Harner , J. Fyfe , Recent climate change in the Canadian Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci. Total Environ. 2005 , 342,  5.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[21]   J. Y. Lu , W. H. Schroeder , L. A. Barrie , A. Steffen , H. E. Welch , K. Martin , L. Lockhart , R. V. Hunt , et al. Magnification of atmospheric mercury deposition to polar regions in springtime: the link to tropospheric ozone depletion chemistry. Geophys. Res. Lett. 2001 , 28,  3219.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   T. A. Douglas , M. Sturm , W. R. Simpson , J. D. Blum , L. Alvarez-Aviles , J. J. Keeler , D. K. Perovich , A. Biswas , et al. Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic. Environ. Sci. Technol. 2008 , 42,  1542.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[23]   J. D. Lalonde , A. J. Poulain , M. Amyot , The role of mercury redox reactions in snow on snow to air mercury transfer. Environ. Sci. Technol. 2002 , 36,  174.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[24]   G. A. Stern , R. W. Macdonald , Biogeographic provinces of total and methyl mercury in zooplankton and fish from the Beaufort and Chukchi Seas: results from the SHEBA drift. Environ. Sci. Technol. 2005 , 39,  4707.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[25]   J. L. Kirk , V. L. St. Louis , M. J. Sharp , Rapid reduction and reemission of mercury deposited into snowpacks during atmospheric mercury depletion events at Churchill, Manitoba, Canada. Environ. Sci. Technol. 2006 , 40,  7590.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[26]   A. J. Poulain , S. M. Ní Chadhain , P. A. Ariya , M. Amyot , E. Garcia , P. G. C. Campbell , G. J. Zylstra , T. Barkay , Potential for mercury reduction by microbes in the High Arctic. Appl. Environ. Microbiol. 2007 , 73,  2230.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[27]   M. E. Andersson , J. Sommar , K. Gardfeldt , O. Lindqvist , Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Mar. Chem. 2008 , 110,  190.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   L. L. Loseto , D. R. S. Lean , S. D. Siciliano , Snowmelt sources of mercury in High Arctic ecosystems. Environ. Sci. Technol. 2004 , 38,  3004.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[29]   R. P. Mason , E.-H. Kim , J. Cornwell , D. Heyes , An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment. Mar. Chem. 2006 , 102,  96.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[30]   N. Ogrinc , M. Monperrus , J. Kotnik , V. Fajon , K. Vidimova , D. Amouroux , D. Kocman , E. Tessier , et al. Distribution of mercury and methylmercury in deep-sea surficial sediments of the Mediterranean Sea. Mar. Chem. 2007 , 107,  31.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[31]   A. D. McGuire , L. G. Anderson , T. R. Christensen , S. Dallimore , L. Guo , D. J. Hayes , M. Heimann , T. D. Lorenson , et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 2009 , 79,  523.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   D. R. Leitch , J. Carrie , D. Lean , R. W. Macdonald , G. A. Stern , F. Wang , The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. Sci. Total Environ. 2007 , 373,  178.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[33]   J. L. Kirk , V. L. St. Louis , Multiyear total and methyl mercury exports from two major sub-Arctic rivers draining into Hudson Bay. Environ. Sci. Technol. 2009 , 43,  2254.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[34]   A. Hare , G. A. Stern , R. W. Macdonald , Z. A. Kuzyk , F. Wang , Contemporary and pre-industrial mass budgets of mercury in the Hudson Bay marine system: the role of lateral sediment recycling transport. Sci. Total Environ. 2008 , 406,  190.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[35]   F. J. Wrona , T. D. Prowse , J. D. Reist , J. E. Hobbie , L. M. J. Levesque , R. W. Macdonald , W. F. Vincent , Effects of ultraviolet radiation and contaminant-related stressors on Arctic freshwater ecosystems. Ambio 2006 , 35,  388.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[36]   J. Klaminder , K. Yoo , J. Rydberg , R. Giesler , An explorative study of mercury export from a thawing palsa mire. J. Geophys. Res. 2008 , 113,  G04034.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   V. L. St. Louis , J. W. M. Rudd , C. A. Kelly , R. A. Bodaly , M. J. Paterson , K. G. Beaty , R. H. Hessleiin , A. Heyes , et al. The rise and fall of mercury methylation in an experimental reservoir. Environ. Sci. Technol. 2004 , 38,  1348.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[38]   S. R. Harris , J. W. M. Rudd , M. Amyot , C. L. Babiarz , K. G. Beaty , P. J. Blanchfield , R. A. Bodaly , B. A. Branfireun , et al. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proc. Natl. Acad. Sci. USA 2007 , 104,  16586.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   D. Cossa , B. Aveerty , N. Pirrone , The origin of methylmercury in open Mediterranean waters. Limnol. Oceanogr. 2009 , 54,  837.
        |  CAS |  open url image1

[40]   E. M. Sunderland , D. P. Krabbenhoft , J. W. Moreau , S. A. Strode , W. M. Landing , Mercury sources, distribution and bioavailability in the North Pacific Ocean: insights from data and models. Global Biogeochem. Cycles 2009 , 23,  GB2010.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[41]   L. L. Loseto , G. A. Stern , D. Deibel , T. L. Connelly , A. Prokopowicz , L. Fortier , D. R. S. Lean , S. H. Ferguson , Linking mercury exposure to habitat and feeding behaviour in Beaufort Sea beluga whales. J. Mar. Syst. 2008 , 74,  1012.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[42]   L. L. Loseto , G. A. Stern , S. H. Ferguson , Size and biomagnification: how habitat selection explains beluga mercury levels. Environ. Sci. Technol. 2008 , 42,  3982.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[43]   L. Poissant , H. H. Zhang , J. Canário , P. Constant , Critical review of mercury fates and contamination in the arctic tundra ecosystem. Sci. Total Environ. 2008 , 400,  173.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[44]   C. J. Watras , N. S. Bloom , Mercury and methylmercury in individual zooplankton: implications for bioaccumulation. Limnol. Oceanogr. 1992 , 37,  1313.
        | Crossref |  open url image1