Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

The influence of aggregation on the redox chemistry of humic substances

Noel E. Palmer A and Ray von Wandruszka A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA.

B Corresponding author. Email: rvw@uidaho.edu

Environmental Chemistry 6(2) 178-184 https://doi.org/10.1071/EN08081
Submitted: 22 October 2008  Accepted: 6 March 2009   Published: 27 April 2009

Environmental context. The ability of humic substances (decaying plant and animal matter) to partake in redox reactions in the environment depends on the extent to which the various humic polymers aggregate in solution to form larger particles. This aggregation, in turn, is predicated on the solution conditions, especially ionic strength, the pH, and the types of cations present.

Abstract. Aggregation and conformation play an important role in the aqueous redox chemistry of humic substances (HS). The reduction potentials of dissolved humic and fulvic acids vary with pH, ionic strength, and type of humate used, and depending on the solution conditions, they can abiotically reduce various species. Changes in HS reduction potential ranged from 60 to 140 mV on addition of divalent cations, whereas no significant changes were observed with equivalent additions of monovalent cations. Dynamic light scattering measurements showed that this behaviour paralleled the size changes obtained with humic aggregates under the same conditions. The effect was more pronounced at higher pH, where divalent cations caused a significant decrease in the average hydrodynamic radius, whereas monovalent cations did not. At pH 4, neither mono- nor divalent cations substantially affected aggregate sizes. Quinoid moieties, which are known to play an important role in the redox chemistry of HS, displayed fluorescence excitation–emission matrices with features related to changes in the reduction potential of HS. An increase in the reduction potential (Eh) induced by the addition of Ca2+, for instance, caused a red shift in the excitation–emission matrix maximum.

Additional keywords: abiotic reduction, dynamic light scattering, excitation–emission matrix.


References


[1]   D. R. Lovley , J. D. Coates , E. L. Blunt-Harris , E. J. P. Phillips , J. C. Woodward , Humic substances as electron acceptors for microbial respiration. Nature 1996 , 382,  445.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[2]   A. Kappler , M. Benz , B. Schink , A. Brune , Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol. Ecol. 2004 , 47,  85.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   M. Benz , B. Schink , A. Brune , Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl. Environ. Microbiol. 1998 , 64,  4507.
        |  CAS | PubMed |  open url image1

[4]   Y.-G. Hong , J. Guo , Z. C. Xu , M.-Y. Xu , G.-P. Sun , Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. J. Microbiol. Biotechnol. 2007 , 17,  428.
        |  CAS | PubMed |  open url image1

[5]   A. Kappler , A. B. Haderlein , Natural organic matter as reductant for chlorinated aliphatic pollutants. Environ. Sci. Technol. 2003 , 37,  2714.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   K. T. Finneran , H. M. Forbush , C. V. Gaw VanPraagh , D. R. Lovley , Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds. Int. J. Syst. Evol. Microbiol. 2002 , 52,  1929.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[7]   A. Latifoglu , M. D. Gurol , The effect of humic acids on nitrobenzene oxidation by ozonation and O3/UV processes. Water Res. 2003 , 37,  1879.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[8]   M. Szilágyi , Reduction of Fe3+ ion by humic acid preparations. Soil Sci. 1971 , 111,  233.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   A. Matthiessen , Reduction of divalent mercury by humic substances – kinetic and quantitative aspects. Sci. Total Environ. 1998 , 213,  177.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[10]   J. Tan , Y. Chen , A. Lin , A kinetic study of the reduction of plutonium with humic acid. Radiochim. Acta 1993 , 61,  73.
        |  CAS |  open url image1

[11]   C. André , G. R. Choppin , Reduction of Pu(V) by humic acid. Radiochim. Acta 2000 , 88,  613.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   A. D. Redman , D. L. Macalady , D. Ahmann , Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol. 2002 , 36,  2889.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   M. Bauer , C. Blodau , Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci. Total Environ. 2006 , 354,  179.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[14]   N. P. Palmer , J. Freudenthal , R. von Wandruszka , Reduction of arsenates by humic materials. Environ. Chem. 2006 , 3,  131.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   Z. Struyk , G. Sposito , Redox properties of standard humic acids. Geoderma 2001 , 102,  329.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[16]   A. Matthiessen , Determining the redox capacity of humic substances as a function of pH. Vom Wasser 1995 , 84,  229.
        |  CAS |  open url image1

[17]   R. S. Helburn , P. MacCarthy , Determination of some redox properties of humic acid by alkaline ferricyanide titration. Anal. Chim. Acta 1994 , 295,  263.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[18]   R. D. Holbrook , P. C. DeRose , S. D. Leigh , A. L. Rukhin , N. A. Heckert , Excitation–emission matrix fluorescence spectroscopy for natural organic matter characterization: a quantitative evaluation of calibration and spectral correction procedures. Appl. Spectrosc. 2006 , 60,  791.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[19]   R. D. JiJi , G. G. Andersson , K. S. Booksh , Application of PARAFAC for calibration with excitation–emission matrix fluorescence spectra of three classes of environmental pollutants. J. Chemometr. 2000 , 14,  171.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[20]   P. Fu , F. Wu , C. Liu , Fluorescence excitation–emission matrix characterization of a commercial humic acid. Chin. J. Geochem. 2004 , 23,  309.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   P. Kowalczuk , J. Ston-Egiert , W. J. Cooper , R. F. Whitehead , M. J. Durako , Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence. Mar. Chem. 2005 , 96,  273.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   M. Provenzano , V. D’Orazio , M. Jerzykiewicz , N. Senesi , Fluorescence behavior of Zn and Ni complexes of humic acids from different sources. Chemosphere 2004 , 55,  885.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[23]   B. J. H. Matthews , A. C. Jones , N. K. Theodorou , A. W. Tudhope , Excitation–emission matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Mar. Chem. 1996 , 55,  317.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   L. Klapper , D. M. McKnight , J. R. Fulton , E. L. Blunt-Harris , K. P. Nevin , D. R. Lovley , P. G. Hatcher , Fulvic acid oxidation state detection using fluorescence spectroscopy. Environ. Sci. Technol. 2002 , 36,  3170.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[25]   R. M. Cory , D. M. McKnight , Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol. 2005 , 39,  8142.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[26]   J. J. Mobed , S. L. Hemmingsen , J. L. Autry , L. B. McGown , Fluorescence characterization of IHSS humic substances: total luminescence spectra with absorbance correction. Environ. Sci. Technol. 1996 , 30,  3061.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[27]   R. L. Fimmen , R. M. Cory , Y.-P. Chin , D. T. Trouts , D. M. McKnight , Probing the oxidation–reduction properties of terrestrially and microbially derived dissolved organic matter. Geochim. Cosmochim. Acta 2007 , 71,  3003.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   D. R. Lovley , J. L. Fraga , E. L. Blunt-Harris , L. A. Hayes , E. J. P. Phillips , J. D. Coates , Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim. Hydrobiol. 1998 , 26,  152.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[29]   D. T. Scott , D. M. McKnight , E. L. Blunt-Harris , S. E. Kolesar , D. R. Lovley , Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 1999 , 33,  372.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   K. Polewski , D. Slawinska , J. Slawinski , A. Pawlak , The effect of UV and visible light radiation on a natural humic acid. Geoderma 2005 , 126,  291.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[31]   Cheshire M. V., Senesi N., IUPAC Series on analytical and physical chemistry of environmental systems, in Structure and Surface Reactions of Soil Particles (Eds P. M. Huang, N. Senesi, J. Buffle) 1998, vol. 4, pp. 325–373 (Wiley: Chichester , UK).

[32]   X. Lu , D. W. Johnson , J. Hook , Reaction of vanadate with aquatic humic substances: an ESR and 51V NMR study. Environ. Sci. Technol. 1998 , 32,  2257.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[33]   Hayes M. H. B., Extraction of Humic Substances from Soils, in Humic Substances in Soil, Sediment and Water – Geochemistry, Isolation, and Characterization (Eds G. R. Aiken, D. M. McNight, R. L. Wershaw, P. MacCarthy) 1985, pp. 329–362 (Wiley: New York).

[34]   M. Eigen , K. Kustin , Kinetics of halogen hydrolysis. J. Am. Chem. Soc. 1962 , 84,  1355.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   V. W. Truesdale , G. W. Luther , Molecular iodine reduction by natural and model organic substances in seawater. Aquat. Geochem. 1995 , 1,  89.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   D. A. Palmer , M. H. Lietzke , The equilibriums and kinetics of iodine hydrolysis. Radiochim. Acta 1982 , 31,  37.
        |  CAS |  open url image1

[37]   Matthiessen A., Evaluating the redox capacity and the redox potential of humic acids by redox titrations, in The Global Environment and Implications on Human Health (Eds N. Senesi, T. M. Miano) 1994, pp. 187–192 (Elsevier: Amsterdam).

[38]   M. Szilagyi , Redox properties and the determination of the normal potential of the peat–water system. Soil Sci. 1973 , 115,  434.
        |  CAS |  open url image1

[39]   Schnitzer M., Khan A. U., Reactions of humic substances with metal ions and hydrous oxides, in Humic Substances in the Environment 1972, pp. 203–251 (Marcel Dekker: New York).

[40]   R. von Wandruszka , The micellar model of humic acid: evidence from pyrene fluorescence measurements. Soil Sci. 1998 , 163,  921.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[41]   N. E. Palmer , R. von Wandruszka , Dynamic light scattering measurements of particle size development in aqueous humic materials. Fresenius J. Anal. Chem. 2001 , 371,  951.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[42]   L. F. Zara , A. H. Rosa , I. A. S. Toscano , J. C. Rocha , A structural conformation study of aquatic humic acid. Brazil. Chem. Soc. 2006 , 17,  1014.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1