Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Photodegradation of nonylphenol polyethoxylates in aqueous solution

Lei Wang A , Hongwen Sun A C , Yinghong Wu B , Guolan Huang A and Shugui Dai A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, Tianjin, 300071, China.

B Tianjin Centers for Disease Control and Prevention, 76 Hualong Road, Tianjin, 300011, China.

C Corresponding author. Email: nkenv@nankai.edu.cn

Environmental Chemistry 6(2) 185-193 https://doi.org/10.1071/EN08101
Submitted: 3 December 2008  Accepted: 3 March 2009   Published: 27 April 2009

Environmental context. Nonylphenol polyethoxylates (NPEOs) are widely used non-ionic surfactants, and they cause environmental concern because some metabolites of NPEOs possess endocrine-disrupting activities. Photodegradation is an important pathway for NPEOs degradation, and different degradation products may lead to different environmental risks. The present paper looks at the kinetics and pathways of NPEO photodegradation in aqueous solutions, focussing on the effects of humic acid, H2O2, and FeIII. We found that the presence of different chemicals led to different degradation pathways, and a new mechanism is proposed.

Abstract. To further elucidate the mechanism of photoinduced degradation of nonylphenol polyethoxylates (NPEOs) in aqueous environments, two different light systems, UVA and simulated sunlight, were used, and the effects of humic acid, H2O2, and FeIII were investigated. The 96-h degradation efficiencies of NPEOs in pure water solution were found to be 36.6 and 22.6% under UVA and SSL irradiation respectively. The presence of humic acid and FeIII in solution increased the photodegradation efficiency of NPEOs to different extents. The proportion of short-chain NPEOs in the NPEOn mixture was found to increase significantly in the solution containing FeIII, whereas this phenomenon was not observed in pure water and solutions containing H2O2 or humic acid. The result of NPEO3 photodegradation experiments indicated that FeIII in solution led to an ethoxylate-reduction pathway. Dicarboxylated formate ethoxylates were proposed as the intermediate products of NPEO photodegradation through an oxidative pathway based on the analytical results of liquid chromatography–electrospray ionisation–mass spectrometry and tandem mass spectrometry. Different mechanisms of NPEO photodegradation were elucidated.

Additional keywords: dicarboxylated formate ethoxylates, ethoxylate-reduction pathway, humic acid, hydrogen peroxide, iron(III).


Acknowledgement

The present study was funded by the National Natural Science Foundation of China (No. 20677031 & No. 50239060).


References


[1]   N. Jonkers , R. W. P. M. Laane , C. de Graaf , P. de Voogt , Fate modeling of nonylphenol ethoxylates and their metabolites in the Dutch Scheldt and Rhine estuaries: validation with new field data. Estuar. Coast. Shelf. Sci. 2005 , 62,  141.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[2]   G. G. Ying , B. Williams , R. Kookana , Environmental fate of alkylphenols and alkylphenol ethoxylates: a review. Environ. Int. 2002 , 28,  215.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[3]   J. A. Field , R. L. Reed , Nonylphenol polyethoxycarboxylate metabolites of non-ionic surfactants in US paper-mill effluents, municipal sewage-treatment plant effluents and river waters. Environ. Sci. Technol. 1996 , 30,  3544.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[4]   T. L. Potter , K. Simmons , J. N. Wu , P. Kostecki , E. Calabress , Static die-away of a nonylphenol ethoxylate surfactant in estuarine water samples. Environ. Sci. Technol. 1999 , 33,  113.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[5]   C. A. Staples , J. B. Williams , R. L. Blessing , P. T. Varineau , Measuring the biodegradability of nonylphenol ether carboxylates, octylphenol ether carboxylates and nonylphenol. Chemosphere 1999 , 38,  2029.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   N. Jonkers , T. Knepper , P. de Voogt , Aerobic biodegradation studies of nonylphenol polyethoxylates in river water using liquid chromatography–electrospray tandem mass spectrometry. Environ. Sci. Technol. 2001 , 35,  335.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[7]   N. Jonkers , R. W. P. M. Laane , C. de Graaf , P. de Voogt , Fate of nonylphenol ethoxylates and their metabolites in two Dutch estuaries: evidence of biodegradation in the field. Environ. Sci. Technol. 2003 , 37,  321.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[8]   L. Wang , Y. Wu , H. Sun , J. Xu , S. Dai , Distribution and dissipation pathways of nonylphenol polyethoxylates in the Yellow River: site investigation and lab-scale studies. Environ. Int. 2006 , 32,  907.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[9]   S. Jobling , J. P. Sumpter , Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol. 1993 , 27,  361.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[10]   S. C. Laws , S. A. Carey , J. M. Ferrell , G. J. Bodman , R. L. Cooper , Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol. Sci. 2000 , 54,  154.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[11]   D. Vione , G. Falletti , V. Maurino , C. Minero , E. Pelizzetti , M. Malandrino , R. Ajassa , R. I. Olariu , C. Arsene , Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environ. Sci. Technol. 2006 , 40,  3775.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   C. D. Clark , W. J. De Bruyn , J. Ting , W. Scholle , Solution medium effects on the photochemical degradation of pyrene in water. J. Photochem. Photobiol. A 2007 , 186,  342.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[13]   R. Goto , T. Kubota , Y. Ibuki , K. Kaji , A. Goto , Degradation of nonylphenol polyethoxylates by ultraviolet B irradiation and effects of their products on mammalian cultured cells. Toxicology 2004 , 202,  237.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[14]   K. B. Sherrard , P. J. Marriott , R. G. Amiet , M. J. McCormick , R. Colton , K. Millington , Spectroscopic analysis of heterogeneous photocatalysis products of nonylphenol and primary alcohol ethoxylate non-ionic surfactants. Chemosphere 1996 , 33,  1921.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   K. B. Sherrard , P. J. Marriott , R. G. Amiet , R. Colton , M. J. McCormick , G. C. Smith , Photocatalytic degradation of secondary alcohol ethoxylate: spectroscopic, chromatographic and mass spectrometric studies. Environ. Sci. Technol. 1995 , 29,  2235.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[16]   N. Brand , G. Mailhot , M. Bolte , The interaction ‘light, Fe(III)’ as a tool for pollutant removal in aqueous solution: degradation of alcohol ethoxylates. Chemosphere 2000 , 40,  395.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   N. Brand , G. Mailhot , M. Bolte , Degradation photoinduced by Fe(III): method of alkylphenol ethoxylates removal in water. Environ. Sci. Technol. 1998 , 32,  2715.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[18]   L. Chen , H. Zhou , Q. Deng , Photolysis of nonylphenol ethoxylates: the determination of the degradation kinetics and the intermediate products. Chemosphere 2007 , 68,  354.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[19]   R. G. Zepp , P. F. Schlotzhauer , R. M. Sink , Photosensitized transformations involving electronic energy transfer in natural waters: role of humic substances. Environ. Sci. Technol. 1985 , 19,  74.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   S. Canonica , U. Jans , K. Stemmler , J. Hoigné , Transformation kinetics of phenols in water: photosensitization by dissolved natural organic material and aromatic ketones. Environ. Sci. Technol. 1995 , 29,  1822.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   Symons M. C. R., Photolysis of hydrogen peroxide in fluid and rigid media, in Peroxide Reactions Mechanisms (Ed. J. O. Edwards) 1962, pp. 137–151 (Wiley: New York).

[22]   J. R. Garbin , D. M. B. P. Milori , M. L. Simões , W. T. L. da Silva , L. M. Neto , Influence of humic substances on the photolysis of aqueous pesticide residues. Chemosphere 2007 , 66,  1692.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[23]   E. Rodríguez , M. Mimbrero , F. J. Masa , F. J. Beltrán , Homogeneous iron-catalyzed photochemical degradation of muconic acid in water. Water Res. 2007 , 41,  1325.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[24]   B. C. Faust , J. Hoigne , Photolysis of Fe(III)–hydroxy complexes as sources of OH radicals in cloud, fog and rain. Atmos. Environ. 1990 , 24,  79.
         open url image1

[25]   O. Bajt , G. Mailhot , M. Bolte , Degradation of dibutyl phthalate by homogeneous photocatalysis with Fe(III) in aqueous solution. Appl. Catal. B 2001 , 33,  239.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   S. Lunák , P. J. Sedlák , Photoinitiated reactions of hydrogen peroxide in the liquid phase. Photochem. Photobiol. A 1992 , 68,  1.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   Bolton J. R., Ultraviolet Applications Handbook, 2nd edn 2001 (Bolton Photosciences Inc.: Edmonton, AB).

[28]   S. Hayashi , S. Saito , J. H. Kim , O. Nishimura , R. Sudo , Aerobic biodegradation behavior of nonylphenol polyethoxylates and their metabolites in the presence of organic matter. Environ. Sci. Technol. 2005 , 39,  5626.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[29]   A. Di Corcia , A. Costantino , C. Crescenzi , E. Marinoni , R. Sampero , Characterization of recalcitrant intermediates from biotransformation of the branched alkyl side chain of nonylphenol ethoxylate surfactants. Environ. Sci. Technol. 1998 , 32,  2401.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[30]   J. A. Howitt , D. S. Baldwin , G. N. Rees , B. T. Hart , Facilitated heterogeneous photodegradation of dissolved organic matter by particulate iron. Environ. Chem. 2004 , 1,  197.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1