Detection of components in nanoparticles by resonant ionisation and laser breakdown time-of-flight mass spectrometry
Yoshihiro Deguchi A D , Nobuyuki Tanaka B , Masaharu Tsuzaki B , Akihiro Fushimi C , Shinji Kobayashi C and Kiyoshi Tanabe CA Plasma and Photonics Laboratory, Nagasaki Research and Development Center, Mitsubishi Heavy Industries, Ltd, 5-717-1, Fukahori-machi, Nagasaki 815-0392, Japan.
B Central Research Institute of Electric Power Industry, 2-11-1 Iwadokita, Komae-shi, Tokyo 201-8511, Japan.
C National Institute for Environmental Studies (Independent Administrative Institute), Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan.
D Corresponding author. Email: yoshihiro_deguchi@mhi.co.jp
Environmental Chemistry 5(6) 402-412 https://doi.org/10.1071/EN08049
Submitted: 7 August 2008 Accepted: 4 November 2008 Published: 18 December 2008
Environmental context. The monitoring of aerosol nanoparticles in the atmosphere is a ‘hot’ topic in environmental management. Such particles in the atmosphere are produced by the combustion of fossil fuels such as in engines. Although they make up only a small percentage of particle total mass, nanosized particles account for more than 90% of the particle number in diesel engine exhaust, and their harmful influences on human health are a serious issue. The system developed in this study has great potential to clarify the origin and behaviour of these aerosol particles more precisely using its online characteristics.
Abstract. Resonance ionisation and laser breakdown time-of-flight mass spectrometry (TOFMS) with particle size selectivity using a differential mobility analyser (DMA) was developed and applied to detect components in nanoparticles. The resonance ionisation and laser breakdown TOFMS method was demonstrated to have a sensitivity of ng m–3, and was shown to be applicable to nanoparticles using a newly developed standard nanoparticle generator. The developed system was successfully applied to 4-stroke diesel engine exhaust gas to show the mass spectrum patterns measured in 30 and 80-nm particles. The measured spectrum intensities were evaluated to calculate the concentration of organic compounds in nanoparticles, and these values were compared with low-pressure impactor measurement results. The two measurements showed concentrations with the same order of magnitude and the validity of the newly developed TOFMS method was examined using the nanoparticles in the actual diesel gas exhaust.
Additional keywords: chemical substance, element, engine exhaust, nanoparticle, REMPI.
Acknowledgements
This research was supported by the environmental development fund, administrated by the Japanese Ministry of the Environment.
[1]
D. B. Kittelson ,
Engines and nanoparticles.
J. Aerosol Sci. 1998
, 29, 575.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[2]
[3]
K. Donaldson ,
X. Y. Li ,
W. MacNee ,
Ultrafine (nanometre) particle mediated lung injury.
J. Aerosol Sci. 1998
, 29, 553.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[4]
R. J. Pritchard ,
A. K. Ghio ,
J. R. Lehmann ,
D. W. Winsett ,
J. S. Tepper ,
P. Park ,
M. I. Gilmour ,
K. L. Dreher ,
D. L. Costa ,
Oxidant generation and lung injury after particulate air pollutant exposure increase with the concentration of associated metals.
Inhal. Toxicol. 1996
, 8, 447.
[5]
H. Tobias ,
P. J. Ziemann ,
Compound identification in organic aerosols using temperature-programmed thermal desorption particle beam mass spectrometry.
Anal. Chem. 1999
, 71, 3428.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[6]
H. J. Tobias ,
P. J. Ziemann ,
Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and O3 in the presence of alcohols and carboxylic acids.
Environ. Sci. Technol. 2000
, 34, 2105.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
H. J. Tobias ,
D. E. Beving ,
P. J. Ziemann ,
H. Sakurai ,
M. Zuk ,
P. H. McMurry ,
D. Zarling ,
R. Waytulonis ,
D. B. Kittelson ,
Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer.
Environ. Sci. Technol. 2001
, 35, 2233.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[8]
T. Ferge ,
E. Karg ,
A. Schröppel ,
K. R. Coffee ,
H. J. Tobias ,
M. Frank ,
E. E. Gard ,
R. Zimmermann ,
Fast determination of the relative elemental and organic carbon content of aerosol samples by on-line single-particle aerosol time-of-flight mass spectrometry.
Environ. Sci. Technol. 2006
, 40, 3327.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[9]
A. N. Zelenyuk ,
D. G. Imre ,
Single particle laser ablation time-of-flight mass spectrometer: an introduction to SPLAT.
Aerosol Sci. Technol. 2005
, 39, 554.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
J. Schneider ,
N. Hock ,
S. Weimer ,
S. Borrmann ,
U. Kirchner ,
R. Vogt ,
V. Scheer ,
Nucleation particles in diesel exhaust: composition inferred from in-situ mass spectrometric analysis.
Environ. Sci. Technol. 2005
, 39, 6153.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
F. Drewnick ,
S. S. Hings ,
P. DeCarlo ,
J. T. Jayne ,
M. Gonin ,
K. Fuhrer ,
S. Weimer ,
J. L. Jimenez ,
K. L. Demerjian ,
S. Borrmann ,
D. R. Worsnop ,
A new time-of-flight aerosol mass spectrometer (TOF-AMS)-instrument description and first field deployment.
Aerosol Sci. Technol. 2005
, 39, 637.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[12]
X. Qin ,
P. V. Bhave ,
K. A. Prather ,
Comparison of two methods for obtaining quantitative mass concentrations from aerosol time-of-flight mass spectrometry measurements.
Anal. Chem. 2006
, 78, 6169.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[13]
Y. Deguchi ,
S. Dobashi ,
N. Fukuda ,
K. Shinoda ,
M. Morita ,
Real-time PCB monitoring using time-of-flight mass spectrometry with picosecond laser ionization.
Environ. Sci. Technol. 2003
, 37, 4737.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[14]
D. M. Lubman ,
M. N. Kronick ,
Mass spectrometry of aromatic molecules with resonance-enhanced multiphoton ionization.
Anal. Chem. 1982
, 54, 660.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
R. Tembreull ,
C. H. Sin ,
H. M. Pang ,
D. M. Lubman ,
Resonance enhanced multiphoton ionization spectroscopy for detection of azabenzenes in supersonic beam mass spectrometry.
Anal. Chem. 1985
, 57, 2911.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[16]
R. Tembreull ,
D. M. Lubman ,
Pulsed laser desorption with resonant two-photon ionization detection in supersonic beam mass spectrometry.
Anal. Chem. 1986
, 58, 1299.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[17]
L. Li ,
D. M. Lubman ,
Resonant two-photon ionization of CBZ-derivatized nonaromatic peptides using pulsed laser desorption in supersonic beam mass spectrometry.
Appl. Spectrosc. 1988
, 42, 411.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[18]
R. Tembreull ,
D. M. Lubman ,
Pulsed laser desorption of biological molecules in supersonic beam mass spectrometry with resonant two-photon ionization detection.
Anal. Chem. 1987
, 59, 1082.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[19]
U. Boesl ,
Multiphoton excitation and mass-selective ion detection for neutral and ion spectroscopy.
J. Phys. Chem. 1991
, 95, 2949.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[20]
R. Zimmermann ,
U. Boesl ,
C. Weickhardt ,
D. Lenoir ,
K.-W. Schramm ,
A. Kettrup ,
E. W. Schla ,
Isomer-selective ionization of chlorinated aromatics with lasers for analytical time-of-flight mass spectrometry: first results for polychlorinated dibenzo-p-dioxins (PCDD), biphenyls (PCB) and benzenes (PCBz).
Chemosphere 1994
, 29, 1877.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
H. Oser ,
R. Thanner ,
H.-H. Grotheer ,
Continuous monitoring of ultratrace products of incomplete combustion during incineration with a novel mobile Jet-REMPI device.
Chemosphere 1998
, 37, 2361.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
Y. Deguchi ,
N. Tanaka ,
Determination of organic compounds in nano-particles by laser breakdown and resonant ionization time-of-flight mass spectrometry.
Spectrochim. Acta B 2005
, 60, 1236.
| Crossref | GoogleScholarGoogle Scholar |
[23]
A. Fushimi ,
S. Hasegawa ,
K. Takahashi ,
Y. Fujitani ,
K. Tanabe ,
S. Kobayashi ,
Atmospheric fate of nuclei-mode particles estimated from the number concentrations and chemical composition of particles measured at roadside and background sites.
Atmos. Environ. 2008
, 42, 949.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
[25]
[26]
D. M. Lubman ,
Analytical multiphoton ionization mass spectrometry. Part II. Applications.
Mass Spectrom. Rev. 1988
, 7, 559.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[27]
M. G. Qian ,
D. M. Lubman ,
Procedures for tandem mass spectrometry on an ion trap storage/reflectron time-of-flight mass spectrometer.
Rapid Commun. Mass Spectrom. 1996
, 10, 1911.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[28]