Arsenic accumulation, biotransformation and localisation in bertha armyworm moths
Ruwandi Andrahennadi A and Ingrid J. Pickering A BA Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK, S7N 5E2, Canada.
B Corresponding author. Email: ingrid.pickering@usask.ca
Environmental Chemistry 5(6) 413-419 https://doi.org/10.1071/EN08065
Submitted: 13 September 2008 Accepted: 27 November 2008 Published: 18 December 2008
Environmental context. Insects play an important role in the impact of environmental pollutants such as arsenic. They may accumulate arsenic to high levels, potentially modifying its chemical form, which affects the insects’ toxicity to predators such as fish and birds. Here we use synchrotron X-ray techniques to determine the distribution and chemical form of arsenic in larva, pupa and adult of the bertha armyworm moth.
Abstract. Insects are important in bioaccumulation and dispersal of environmental contaminants such as arsenic, and biotransformation of arsenic to various chemical forms directly impacts its toxicity to insects and to their predators. In a model study, the toxic effects and biotransformation of arsenic were examined in larvae, pupae and adults of bertha armyworm moth (Mamestra configurata Walker) (Lepidoptera: Noctuidae). A synthetic diet containing 100 μM arsenate caused reduced larval survival and increased pupal stage duration but no effect on pupal weight or larval stage duration. Synchrotron X-ray absorption spectroscopy (XAS) showed that larvae biotransformed dietary arsenate to yield predominantly trivalent arsenic coordinated with three aliphatic sulfurs, modelled as AsIII-tris-glutathione. Similar species were found in pupae and adults. XAS imaging with micro X-ray fluorescence imaging revealed highly localised arsenic species, and zinc and copper within the gut. The implication of these arsenic species in the diets of predators is discussed.
Acknowledgements
The present research is supported by the Province of Saskatchewan and a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) (to I. J. Pickering). I. J. Pickering is a Canada Research Chair. We thank Agriculture and Agri-Food Canada (Saskatoon Research Centre) for insects and rearing facilities. We also thank Graham George and Helen Nichol for helpful discussions and Pickering/George group members for assistance in data collection. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program.
[1]
M. G. M. Alam ,
G. Allinson ,
F. Stagnitti ,
A. Tanaka ,
M. Westbrooke ,
Arsenic contamination in Bangladesh groundwater: a major environmental and social disaster.
Int. J. Environ. Health Res. 2002
, 12, 235.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[2]
S. Wang ,
C. N. Mulligan ,
Occurrence of arsenic contamination in Canada: sources, behavior and distribution.
Sci. Total Environ. 2006
, 366, 701.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[3]
K. Newton ,
D. Amarasiriwardana ,
B. Xing ,
Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard.
Environ. Pollut. 2006
, 143, 197.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[4]
C. A. Morrissey ,
C. A. Albert ,
P. L. Dods ,
W. R. Cullen ,
V. W.-M. Lai ,
J. E. Elliott ,
Arsenic accumulation in bark beetles and forest birds occupying mountain pine beetle-infested stands treated with monosodium methanearsonate.
Environ. Sci. Technol. 2007
, 41, 1494.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[5]
B. J. Moldovan ,
D.-T. Jiang ,
M. J. Hendry ,
Mineralogical characterization of arsenic in uranium mine tailings precipitated from iron-rich hydrometallurgical solutions.
Environ. Sci. Technol. 2003
, 37, 873.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[6]
G. J. Zagury ,
S. Dobran ,
S. Estrela ,
L. Deschenes ,
Inorganic arsenic speciation in soil and groundwater near in-service chromated copper arsenate-treated wood poles.
Environ. Toxicol. Chem. 2008
, 27, 799.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[7]
K. Green ,
Migratory bogong moths (Agrotis infusa) transport arsenic and concentrate it to lethal effect by estivating gregariously in alpine regions of the Snowy Mountains of Australia.
Arct. Antarct. Alp. Res. 2008
, 40, 74.
| Crossref | GoogleScholarGoogle Scholar |
[8]
K. A. Francesconi ,
J. S. Edmonds ,
Arsenic in the sea.
Oceanogr. Mar. Biol. 1993
, 31, 111.
[9]
[10]
M. A. Lopez-Gonzalvez ,
M. Milagros-Gomez ,
C. Camara ,
M. A. Palacios ,
Determination of toxic and non-toxic arsenic species in urine by microwave-assisted mineralization and hydride generation atomic absorption spectrometry.
Mikrochim. Acta 1995
, 120, 301.
|
CAS |
[11]
P. Andrewes ,
D. M. DeMarini ,
K. Funasaka ,
K. Wallace ,
V. W. M. Lai ,
H. Sun ,
W. R. Cullen ,
K. T. Kitchin ,
Do arsenosugars pose a risk to human health? The comparative toxicities of a trivalent and pentavalent arsenosugar.
Environ. Sci. Technol. 2004
, 38, 4140.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
S. Hirano ,
Y. Kobayashi ,
X. Cui ,
S. Kanno ,
T. Hayakawa ,
A. Shraim ,
The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds.
Toxicol. Appl. Pharmacol. 2004
, 198, 458.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[13]
I. J. Pickering ,
R. C. Prince ,
M. J. George ,
R. D. Smith ,
G. N. George ,
D. E. Salt ,
Reduction and coordination of arsenic in indian mustard.
Plant Physiol. 2000
, 122, 1171.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[14]
I. J. Pickering ,
R. C. Prince ,
D. E. Salt ,
G. N. George ,
Quantitative chemically specific imaging of selenium transformation in plants.
Proc. Natl. Acad. Sci. USA 2000
, 97, 10717.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
I. J. Pickering ,
L. Gumaelius ,
H. H. Harris ,
R. C. Prince ,
G. Hirsch ,
J. A. Banks ,
D. E. Salt ,
G. N. George ,
Localizing the biochemical transformations of arsenate in a hyperaccumulating fern.
Environ. Sci. Technol. 2006
, 40, 5010.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
W. J. Turnock ,
Developmental, survival and reproductive parameters of bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae) on four plant species.
Can. Entomol. 1985
, 117, 1267.
[17]
G. E. Bucher ,
G. K. Bracken ,
The bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Artificial diet and rearing technique.
Can. Entomol. 1976
, 108, 1327.
[18]
[19]
M. Wayland ,
R. Crosley ,
Selenium and other trace elements in aquatic insects in coal-mine affected streams in the rocky mountains of Alberta, Canada.
Arch. Environ. Contam. Toxicol. 2006
, 50, 511.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
[21]
I. J. Pickering ,
G. N. George ,
X-ray absorption spectroscopy imaging of biological tissues.
AIP Conf. Proc. 2007
, 882, 311.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
K. R. Timmermans ,
P. A. Walker ,
The fate of trace metals during the metamorphosis of chironomids (Diptera, Chironomidae).
Environ. Pollut. 1989
, 62, 73.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[23]
N. Scott ,
K. M. Hartlelid ,
N. E. Mackenzie ,
D. E. Carter ,
Reactions of arsenic(III) and arsenic(V) species with glutathione.
Chem. Res. Toxicol. 1993
, 6, 102.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[24]
M. Hirata ,
A. Hisanaga ,
A. Tanaka ,
N. Ishinishi ,
Glutathione and methylation of inorganic arsenate in hamsters.
Appl. Organomet. Chem. 1988
, 2, 315.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
J. L. Freeman ,
C. F. Quinn ,
M. A. Marcus ,
S. Fakra ,
E. A. H. Pilon-Smits ,
Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense.
Curr. Biol. 2006
, 16, 2181.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[26]
C. J. Langdon ,
A. A. Meharg ,
J. Feldmann ,
T. Balgar ,
J. Charnock ,
M. Farquhar ,
T. G. Piearce ,
K. T. Semple ,
J. Cotter-Howells ,
Arsenic speciation in arsenate-resistant and non-resistant populations of the earthworm, Lumbricus rubellus.
J. Environ. Monit. 2002
, 4, 603.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[27]
A. Y. Jeantet ,
C. Ballan-Dufrançais ,
R. Martoja ,
Insects resistance to mineral pollution. Importance of spherocrystal in ionic regulation.
Rev. Ecol. Biol. Sol. 1977
, 14, 563.
|
CAS |
[28]
W. Humbert ,
Cytochemistry and X-ray microprobe analysis of the midgut of Tomocerus minor Lubbock (Insecta: Collembola) with special reference to the physiological significance of the mineral concretions.
Cell Tissue Res. 1978
, 187, 397.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[29]
R. L. Tapp ,
A. Hockaday ,
Combined histochemical and X-ray microanalytical studies on the copper-accumulating granules in the midgut of larval Drosophila.
J. Cell Sci. 1977
, 26, 201.
|
CAS |
PubMed |
[30]
W. Humbert ,
The mineral concretions in the midgut of Tomocerus minor (Collembola): microprobe analysis and physiological significance.
Rev. Ecol. Biol. Sol. 1977
, 14, 71–80.
[31]
D. F. Waterhouse ,
Occurrence and endodermal origin of the peritrophic membrane in some insects.
Nature 1953
, 172, 676.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[32]
M. J. Lehane ,
Peritrophic matrix structure and function.
Annu. Rev. Entomol. 1997
, 42, 525.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[33]
L. Hare ,
A. Tessier ,
P. G. C. Campbell ,
Trace element distributions in aquatic insects: variations among genera, elements and lakes.
Can. J. Fish. Aquat. Sci. 1991
, 48, 1481.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[34]
B. W. Cribb ,
A. Stewart ,
H. Huang ,
R. Truss ,
B. Noller ,
R. Rasch ,
M. P. Zalucki ,
Insect mandibles – comparative mechanical properties and links with metal incorporation.
Naturwissenschaften 2007
, 95, 17.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[35]
D. L. J. Quicke ,
P. Wyeth ,
J. D. Fawke ,
H. H. Basibuyuk ,
J. F. V. Vincent ,
Manganese and zinc in the ovipositors and mandibles of hymenopterous insects.
Zool. J. Linn. Soc. 1998
, 124, 387.
| Crossref | GoogleScholarGoogle Scholar |
[36]
M. Locke ,
H. Nichol ,
Iron economy in insects: transport, metabolism and storage.
Annu. Rev. Entomol. 1992
, 37, 195.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[37]