CrIII binding by surface polymers in natural biomass: the role of carboxylic groups
Pablo Lodeiro A , Adrian Fuentes A , Roberto Herrero A B and Manuel E. Sastre de Vicente AA Departamento de Química Física e Ingeniería Química I, Universidad de A Coruña, Alejandro de la Sota 1, E-15008 A Coruña, Spain.
B Corresponding author. Email: erob@udc.es
Environmental Chemistry 5(5) 355-365 https://doi.org/10.1071/EN08035
Submitted: 25 June 2008 Accepted: 25 September 2008 Published: 31 October 2008
Environmental context. Large quantities of chromium are discharged into the environment as a result of its widespread use in modern industries, and consequently, chromium could constitute a serious pollution problem. Adsorption onto natural biomass offers real potential as a way of removing chromium from the environment, because such adsorbents contain biopolymers with particular chemical stability and selectivity towards metals. In addition, natural biomass constitutes an eco-friendly and cost-effective alternative to the existing methods. Here, specific interactions between chromium and the biomass are investigated.
Abstract. The chromium(III)-binding capacity of several biomaterials has been described under fixed conditions of pH (4.5) and initial metal concentration (100 mg L–1). Three of these materials (Sargassum muticum, orange peel and bracken fern) have been selected and subjected to different studies. Fourier transform infrared and scanning electron microscopy techniques were used to describe the structure of the biomaterials, supporting the hypothesis of a mechanism of metal complexation via carboxylic groups. Potentiometric titrations revealed the quantity of carboxyl groups present in S. muticum, orange peel and bracken fern: 1.78, 0.49 and 0.67 mmol g–1, respectively. Moreover, a model considering different types of binding sites was used to simulate the process and determine the apparent pK values of the main functionalities. The number of carboxylic groups was clearly correlated with the maximum amount of CrIII binding by the materials. A Langmuir competitive model was used to determine the complexation constants for chromium, log KCr, which are very close (~3), supporting the idea of the implication of essentially one acid functionality. Desorption studies were conducted for different times employing H2SO4 and sodium citrate.
Additional keywords: bracken fern, chromium, isotherms, orange peel, Sargassum muticum.
Acknowledgements
The present work was funded by the projects CTM2006–03142/TECNO (from the Ministerio de Educación y Ciencia of Spain) and PGDIT06TAM00401CT (from Xunta de Galicia). The authors would like to thank Dr I. Bárbara and Dr J. Cremades (University of A Coruña).
[1]
J. Kotas ,
Z. Stasicka ,
Chromium occurrence in the environment and methods of its speciation.
Environ. Pollut. 2000
, 107, 263.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[2]
J. Johnson ,
L. Schewel ,
T. E. Graedel ,
The contemporary anthropogenic chromium cycle.
Environ. Sci. Technol. 2006
, 40, 7060.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[3]
A. Agrawal ,
V. Kumar ,
B. D. Pandey ,
Remediation options for the treatment of electroplating and leather tanning effluent containing chromium – a review.
Miner. Process. Extr. M. 2006
, 27, 99.
|
CAS |
[4]
D. Mohan ,
C. U. Pittman ,
Activated carbons and low-cost adsorbents for remediation of tri- and hexavalent chromium from water.
J. Hazard. Mater. 2006
, 137, 762.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[5]
[6]
[7]
G. Crini ,
Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment.
Prog. Polym. Sci. 2005
, 30, 38.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[8]
P. Lodeiro ,
R. Herrero ,
M. E. Sastre de Vicente ,
Thermodynamic and kinetic aspects on the biosorption of cadmium by low cost materials: a review.
Environ. Chem. 2006
, 3, 400.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[9]
L. Jin ,
R. Bai ,
Mechanisms of lead adsorption on chitosan/PVA hydrogel beads.
Langmuir 2002
, 18, 9765.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
J. L. Gardea-Torresdey ,
K. J. Tiemann ,
V. Armendariz ,
L. Bess-Oberto ,
R. R. Chianelli ,
J. Rios ,
J. G. Parsons ,
G. Gamez ,
Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Avena monida (oat) biomass.
J. Hazard. Mater. 2000
, 80, 175.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
D. Park ,
Y. S. Yun ,
D. S. Lee ,
S. R. Lim ,
J. M. Park ,
Column study on Cr(VI)-reduction using the brown seaweed Ecklonia biomass.
J. Hazard. Mater. 2006
, 137, 1377.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
D. Park ,
Y. S. Yun ,
H. W. Lee ,
J. M. Park ,
Advanced kinetic model of the Cr(VI) removal by biomaterials at various pHs and temperatures.
Bioresour. Technol. 2008
, 99, 1141.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[13]
Z. Reddad ,
C. Gérente ,
Y. Andrès ,
P. Le Cloirec ,
Mechanisms of Cr(III) and Cr(VI) removal from aqueous solutions by sugar beet pulp.
Environ. Technol. 2003
, 24, 257.
|
CAS |
PubMed |
[14]
R. Aravindhan ,
B. Madhan ,
J. R. Rao ,
B. U. Nair ,
Recovery and reuse of chromium from tannery wastewaters using Turbinaria ornata seaweed.
J. Chem. Technol. Biotechnol. 2004
, 79, 1251.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
N. R. Bishnoi ,
R. Kumar ,
S. Kumar ,
S. Rani ,
Biosorption of Cr(III) from aqueous solution using algal biomass Spirogyra spp.
J. Hazard. Mater. 2007
, 145, 142.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
M. T. K. Tsui ,
K. C. Cheung ,
N. F. Y. Tam ,
M. H. Wong ,
A comparative study on metal sorption by brown seaweed.
Chemosphere 2006
, 65, 51.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[17]
V. J. P. Vilar ,
C. M. S. Botelho ,
R. A. R. Boaventura ,
Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium.
J. Hazard. Mater. 2007
, 149, 643.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[18]
F. J. Alguacil ,
M. Alonso ,
L. J. Lozano ,
Chromium(III) recovery from waste acid solution by ion-exchange processing using Amberlite IR-120 resin: batch and continuous ion-exchange modelling.
Chemosphere 2004
, 57, 789.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[19]
F. Gode ,
E. Pehlivan ,
Sorption of Cr(III) onto chelating b-DAEG-sporopollenin and CEP-sporopollenin resins.
Bioresour. Technol. 2007
, 98, 904.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
F. Gode ,
E. Moral ,
Column study on the adsorption of Cr(III) and Cr(VI) using pumice, Yarikkaya brown coal, Chelex-100 and Lewatit MP 62.
Bioresour. Technol. 2008
, 99, 1981.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[21]
S. Kocaoba ,
G. Akcin ,
Removal and recovery of chromium and chromium speciation with MINTEQA2.
Talanta 2002
, 57, 23.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
D. Mohan ,
K. P. Singh ,
V. K. Singh ,
Trivalent chromium removal from wastewater using low-cost activated carbon derived from agricultural waste material and activated carbon fabric cloth.
J. Hazard. Mater. 2006
, 135, 280.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[23]
Q. Li ,
J. Zhai ,
W. Zhang ,
M. Wang ,
J. Zhou ,
Kinetic studies of adsorption of Pb(II), Cr(III), and Cu(II) from aqueous solution by sawdust and modified peanut husk.
J. Hazard. Mater. 2007
, 141, 163.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[24]
S. S. Tahir ,
R. Naseem ,
Removal of Cr(III) from tannery wastewater by adsorption onto bentonite clay.
Separ. Purif. Tech. 2007
, 53, 312.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
S. Deng ,
R. Bai ,
Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms.
Water Res. 2004
, 38, 2424.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
A. Zubair ,
H. N. Bhatti ,
M. A. Hanif ,
F. Shafqat ,
Kinetic and equilibrium modeling for Cr(III) and Cr(VI) removal from aqueous solutions by Citrus reticulata waste biomass.
Water Air Soil Pollut. 2008
, 191, 305.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[27]
E. Birlik ,
A. Ersöz ,
E. Açikkalp ,
A. Denizli ,
R. Say ,
Cr(III)-imprinted polymeric beads: sorption and preconcentration studies.
J. Hazard. Mater. 2007
, 140, 110.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[28]
[29]
C. Rey-Castro ,
P. Lodeiro ,
R. Herrero ,
M. E. Sastre de Vicente ,
Acid–base properties of brown seaweed biomass considered as a Donnan gel. A model reflecting electrostatic effects and chemical heterogeneity.
Environ. Sci. Technol. 2003
, 37, 5159.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[30]
[31]
A. Katchalsky ,
N. Shavit ,
H. Eisenberg ,
Dissociation of weak polymeric acids and bases.
J. Polym. Sci. B 1954
, 13, 69.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[32]
P. Lodeiro ,
B. Cordero ,
Z. Grille ,
R. Herrero ,
M. E. Sastre de Vicente ,
Physicochemical studies of cadmium(II) biosorption by the invasive alga in Europe, Sargassum muticum.
Biotechnol. Bioeng. 2004
, 88, 237.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[33]
R. P. Dhakal ,
K. N. Ghimire ,
K. Inoue ,
Adsorptive separation of heavy metals from an aquatic environment using orange waste.
Hydrometallurgy 2005
, 79, 182.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[34]
T. A. Davis ,
B. Volesky ,
A. Mucci ,
A review of the biochemistry of heavy metal biosorption by brown algae.
Water Res. 2003
, 37, 4311.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[35]
J. P. Chen ,
L. Yang ,
Study of a heavy metal biosorption onto raw and chemically modified Sargassum sp. via spectroscopic and modeling analysis.
Langmuir 2006
, 22, 8906.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[36]
P. Lodeiro ,
B. Cordero ,
J. L. Barriada ,
R. Herrero ,
M. E. Sastre de Vicente ,
Biosorption of cadmium by biomass of brown marine macroalgae.
Bioresour. Technol. 2005
, 96, 1796.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[37]
[38]
S. Schiewer ,
S. B. Patil ,
Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics.
Bioresour. Technol. 2008
, 99, 1896.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[39]
A. B. Pérez-Marín ,
V. Meseguer Zapata ,
J. F. Ortuño ,
M. Aguilar ,
J. Sáez ,
M. Lloréns ,
Removal of cadmium from aqueous solutions by adsorption onto orange waste.
J. Hazard. Mater. 2007
, 139, 122.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[40]
R. Herrero ,
P. Lodeiro ,
C. Rey-Castro ,
T. Vilariño ,
M. E. Sastre de Vicente ,
Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata.
Water Res. 2005
, 39, 3199.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[41]
P. Lodeiro ,
C. Rey-Castro ,
J. L. Barriada ,
M. E. Sastre de Vicente ,
R. Herrero ,
Biosorption of cadmium by the protonated macroalga Sargassum muticum: binding analysis with a non-ideal, competitive, and thermodynamically consistent adsorption (NICCA) model.
J. Colloid Interface Sci. 2005
, 289, 352.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[42]
R. Herrero ,
B. Cordero ,
P. Lodeiro ,
C. Rey-Castro ,
M. E. Sastre de Vicente ,
Interactions of cadmium(II) and protons with dead biomass of marine algae Fucus sp.
Mar. Chem. 2006
, 99, 106.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[43]
B. Cordero ,
P. Lodeiro ,
R. Herrero ,
M. E. Sastre de Vicente ,
Biosorption of cadmium by Fucus spiralis.
Environ. Chem. 2004
, 1, 180.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[44]
T. A. Davis ,
B. Volesky ,
R. H. S. F. Vieira ,
Sargassum seaweed as biosorbent for heavy metals.
Water Res. 2000
, 34, 4270.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[45]
S. Schiewer ,
B. Volesky ,
Modeling of the proton–metal ion exchange in biosorption.
Environ. Sci. Technol. 1995
, 29, 3049.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[46]
S. Schiewer ,
M. H. Wong ,
Metal binding stoichiometry and isotherm choice in biosorption.
Environ. Sci. Technol. 1999
, 33, 3821.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[47]
P. Lodeiro ,
R. Herrero ,
M. E. Sastre de Vicente ,
Batch desorption studies and multiple sorption–regeneration cycles in a fixed-bed column for Cd(II) elimination by protonated Sargassum muticum.
J. Hazard. Mater. 2006
, 127, 1649.
| Crossref | GoogleScholarGoogle Scholar |
[48]
P. Lodeiro ,
J. L. Barriada ,
R. Herrero ,
M. E. Sastre de Vicente ,
The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: kinetic and equilibrium studies.
Environ. Pollut. 2006
, 142, 264.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[49]
M. F. Sawalha ,
J. R. Peralta-Videa ,
G. B. Saupe ,
K. M. Dokken ,
J. L. Gardea-Torresdey ,
Using FTIR to corroborate the identity of functional groups involved in the binding of Cd and Cr to saltbush (Atriplex canescens) biomass.
Chemosphere 2007
, 66, 1424.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[50]
S. Deng ,
Y. P. Ting ,
Fungal biomass with grafted poly(acrylic acid) for enhancement of Cu(II) and Cd(II) biosorption.
Langmuir 2005
, 21, 5940.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[51]
P. X. Sheng ,
Y. P. Ting ,
J. P. Chen ,
L. Hong ,
Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms.
J. Colloid Interface Sci. 2004
, 275, 131.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |