Diurnal variation of non-methane hydrocarbons in the subantarctic atmosphere
Bernard Bonsang A B , Amine Al Aarbaoui A and Jean Sciare AA Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, laboratoire mixte Commissariat à l’Energie Atomique/Centre National de la Recherche Scientifique/Université de Versailles Saint Quentin-en-Yvelines, CE Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette, France.
B Corresponding author. Email: bernard.bonsang@lsce.ipsl.fr
Environmental Chemistry 5(1) 16-23 https://doi.org/10.1071/EN07018
Submitted: 13 February 2007 Accepted: 24 January 2008 Published: 22 February 2008
Environmental context. The ocean surface is known to be supersaturated in some non-methane hydrocarbons and particularly alkenes. This oceanic source, though small on a global scale, can be a dominant component of the background atmosphere in remote areas. Attempts have been made to quantify this source, in order to estimate its magnitude in the budgets of these gases in the water column and the atmosphere. A main difficulty is to determine the production processes involved under the effects of plankton activity and solar and UV radiation penetration in the water column.
Abstract. Non-methane hydrocarbons (NMHCs) play a key role in the photochemistry of the remote atmosphere. They are oxidised by OH radicals and subsequently lead to a net formation of peroxy radicals, which have a crucial role in the budget of tropospheric ozone. Whereas in polluted areas, the effect of light hydrocarbons results in a net formation of ozone, in non- or low-polluted areas, the self-reaction of peroxy radicals dominates and leads eventually to ozone destruction, which in turn acts significantly on the OH budget. In remote environments, the origin of the NMHC background level is clearly attributed to a marine production, but a great uncertainty still exists about its geographical, seasonal and diurnal variability. Here, we present in situ measurements of NMHCs and particularly of alkenes in subantarctic areas, which show very systematic diurnal trends in agreement with an origin clearly dependent on photochemical processes on the surface seawater. The diurnal variability of alkene atmospheric mixing ratios appears strongly related to solar irradiance at the ocean surface. The magnitude of this marine source is deduced from a simple 1-D model of the alkene budget in the marine boundary layer. It appears that the required source must be approximately one order of magnitude greater than the source deduced from concentration measured at 1-m depth, and consistent with probable high concentration gradients close to the ocean surface.
Additional keywords: air–sea exchanges, atmospheric chemistry, ozone precursors.
Acknowledgements
The present work was supported in its logistical and financial aspects by IPEV (Institut Français Paul Emile Victor) through the program Capoxy 344 and also by the European Communities (Project EL CID). The authors thank particularly A. Lamalle, R. Pagny and F. Delbard (IPEV) for their technical assistance in setting up the sampling station at the Kerguelen Islands. Supports from CEA and CNRS are also acknowledged.
[1]
G. Polian ,
G. Lambert ,
B. Ardouin ,
A. Jegou ,
Long-range transport of continental radon in subantarctic and Antarctic areas.
Tellus B 1986
, 38, 178.
[2]
[3]
V. Gros ,
B. Bonsang ,
D. Martin ,
P. C. Novelli ,
V. Kazan ,
Carbon monoxide measurements at Amsterdam Island: short term and seasonal variations.
Chemosphere 1999
, 1, 163.
[4]
C. Plass-Dulmer ,
R. Koppman ,
M. Ratte ,
J. Rudolph ,
Light nonmethane hydrocarbons in seawater.
Global Biogeochem. Cy. 1995
, 9, 79.
| Crossref | GoogleScholarGoogle Scholar |
[5]
A. J. Kettle ,
Diurnal cycling of carbon monoxide (CO) in the upper ocean near Bermuda.
Ocean Model. 2005
, 8, 337.
| Crossref | GoogleScholarGoogle Scholar |
[6]
A. Stubbins ,
G. Uher ,
V. Kitidis ,
C. S. Law ,
R. C. Upstill-Goddard ,
E. Malcom ,
S. Woodward ,
The open-ocean source of atmospheric carbon monoxide.
Deep-sea Res. II 2006
, 53, 1685.
| Crossref | GoogleScholarGoogle Scholar |
[7]
M. Ratte ,
C. Plass-Dulmer ,
R. Koppman ,
J. Rudolph ,
Production mechanism of C2–C4 hydrocarbons in seawater: field measurements and experiments.
Global Biogeochem. Cy. 1993
, 7, 369.
| Crossref | GoogleScholarGoogle Scholar |
[8]
R. M. Moore ,
D. E. Oram ,
S. A. Penkett ,
Production of isoprene by marine phytoplankton cultures.
Geophys. Res. Lett. 1994
, 21, 2507.
| Crossref | GoogleScholarGoogle Scholar |
[9]
W. A. McKay ,
M. F. Turner ,
B. M. R. Jones ,
C. M. Halliwell ,
Emissions of hydrocarbons from marine phytoplankton – some results from controlled laboratory experiments.
Atmos. Environ. 1996
, 30, 2583.
| Crossref | GoogleScholarGoogle Scholar |
[10]
W. J. Broadgate ,
P. S. Liss ,
S. A. Penkett ,
Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean.
Geophys. Res. Lett. 1997
, 24, 2675.
| Crossref | GoogleScholarGoogle Scholar |
[11]
M. Ratte ,
O. Bujok ,
A. Spitzy ,
J. Rudolph ,
Photochemical alkene formation in seawater from dissolved organic carbon: Results from laboratory experiments.
J. Geophys. Res. 1998
, 103, 5707.
| Crossref | GoogleScholarGoogle Scholar |
[12]
D. D. Riemer ,
P. J. Milne ,
R. G. Zika ,
W. H. Pos ,
Photoproduction of nonmethane hydrocarbons (NMHC) in seawater.
Mar. Chem. 2000
, 71, 177.
| Crossref | GoogleScholarGoogle Scholar |
[13]
S. L. Shaw ,
W. C. Sallie ,
R. G. Prinn ,
Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton.
Mar. Chem. 2003
, 80, 227.
| Crossref | GoogleScholarGoogle Scholar |
[14]
A. C. Lewis ,
J. B. McQuaid ,
N. Carslaw ,
M. J. Pilling ,
Diurnal cycles of shortlived tropospheric alkenes at a north Atlantic coastal site.
Atmos. Environ. 1999
, 33, 2417.
| Crossref | GoogleScholarGoogle Scholar |
[15]
A. C. Lewis ,
L. J. Carpenter ,
M. J. Pilling ,
Nonmethane hydrocarbons in Southern Ocean boundary layer air.
J. Geophys. Res. 2001
, 106, 4987.
| Crossref | GoogleScholarGoogle Scholar |
[16]
R. Wanninkhof ,
Relationship between wind speed and gas exchange over the ocean.
J. Geophys. Res. 1992
, 97, 7373.
| Crossref | GoogleScholarGoogle Scholar |
[17]
C. R. Wilke ,
P. Chang ,
Correlation of diffusion coefficients in dilute solutions.
AIChE J. 1955
, 1, 264.
| Crossref | GoogleScholarGoogle Scholar |
[18]
[19]
G. P. Ayers ,
H. Granek ,
R. Boers ,
Ozone in the marine boundary layer at Cape Grim: model simulation.
J. Atmos. Chem. 1997
, 27, 179.
| Crossref | GoogleScholarGoogle Scholar |
[20]
C. M. Spivakovsky ,
J. A. Logan ,
S. A. Montzka ,
Y. J. Balkanski ,
M. Foreman-Fowler ,
D. B. A. Jones ,
L. W. Horowitz ,
A. C. Fusco ,
C. A. M. Brenninkmeijer ,
M. J. Prather ,
S. C. Wofsy ,
M. B. McElroy ,
Three-dimensional climatological distribution of tropospheric OH: update and evaluation.
J. Geophys. Res. 2000
, 105, 8931.
| Crossref | GoogleScholarGoogle Scholar |
[21]
R. A. Lamontagne ,
J. W. Swinnerton ,
W. J. Linnenbom ,
C1–C4 hydrocarbons in the north and south Pacific.
Tellus 1974
, 26, 71.
[22]
B. Bonsang ,
M. Kanakidou ,
G. Lambert ,
P. Monfray ,
The marine source of C2–C6 aliphatic hydrocarbons.
J. Atmos. Chem. 1988
, 6, 3.
| Crossref | GoogleScholarGoogle Scholar |
[23]
J. Rudolph ,
F. J. Johnen ,
Measurements of light atmospheric hydrocarbons over the Atlantic in regions of low biological activity.
J. Geophys. Res. 1990
, 95, 20583.
| Crossref | GoogleScholarGoogle Scholar |
[24]
N. Donahue ,
R. G. Prinn ,
Nonmethane hydrocarbon chemistry in the remote marine boundary layer.
J. Geophys. Res. 1990
, 95, 18387.
| Crossref | GoogleScholarGoogle Scholar |
[25]
N. Donahue ,
R. G. Prinn ,
In situ nonmethane hydrocarbon measurements on SAGA 3.
Geophys. Res. 1993
, 98, 16915.
| Crossref | GoogleScholarGoogle Scholar |
[26]
C. Plass ,
R. Koppman ,
J. Rudolph ,
Light hydrocarbons in the surface water of the mid-Atlantic.
J. Atmos. Chem. 1992
, 15, 235.
| Crossref | GoogleScholarGoogle Scholar |
[27]
T. Saito ,
Y. Yokouchi ,
K. Kawamura ,
Distributions of C2–C6 hydrocarbons over the western North Pacific and eastern Indian Ocean.
Atmos. Environ. 2000
, 34, 4373.
| Crossref | GoogleScholarGoogle Scholar |
[28]
B. Bonsang ,
C. Polle ,
G. Lambert ,
Evidence for marine production of isoprene.
Geophys. Res. Lett. 1992
, 19, 1129.
| Crossref | GoogleScholarGoogle Scholar |
[29]
C. Plass-Dülmer ,
A. Khedim ,
R. Koppman ,
F. J. Johnen ,
J. Rudolph ,
Hydrocarbon emissions from the Atlantic.
Global Biogeochem. Cy. 1993
, 7, 211.
| Crossref | GoogleScholarGoogle Scholar |
[30]
M. Ratte ,
C. Plass-Dulmer ,
R. Koppman ,
J. Rudolph ,
Horizontal and vertical profiles of light hydrocarbons in seawater related to biological, chemical, and physical parameters.
Tellus B 1995
, 47, 607.
| Crossref | GoogleScholarGoogle Scholar |
[31]
R. Seifert ,
N. Delling ,
H. Hermann Richnow ,
S. Kempe ,
J. Hefter ,
W. Michaelis ,
Ethylene and methane in the upper water column of the subtropical Atlantic.
Biogeochemistry 1999
, 44, 73.
[32]
A. J. Kettle ,
Comparison of the nonlocal transport characteristics of a series of one-dimensional oceanic boundary layer models.
Ocean Model. 2005
, 8, 301.
| Crossref | GoogleScholarGoogle Scholar |
[33]
X. L. Zhou ,
K. Mopper ,
Photochemical production of low-molecular carbonyl compounds in seawater and surface microlayer and the air-sea exchanges.
Mar. Chem. 1997
, 56, 201.
| Crossref | GoogleScholarGoogle Scholar |
[34]
A. R. Baker ,
S. M. Turner ,
W. J. Broadgate ,
A. Thompson ,
G. B. McFiggans ,
O. Vesperii ,
P. D. Nightengale ,
P. S. Liss ,
T. D. Jickells ,
Distribution and sea-air fluxes of biogenic trace gases in the eastern Atlantic Ocean.
Global Biogeochem. Cy. 2000
, 14, 871.
| Crossref | GoogleScholarGoogle Scholar |
[35]
Y. Yokouchi ,
H. J. Li ,
T. Machida ,
S. Aoki ,
H. Akimoto ,
Isoprene in the marine boundary layer (southeast Asian Sea, eastern Indian Ocean, and Southern Ocean): comparison with dimethyl sulfide and bromoform.
J. Geophys. Res. 1999
, 104, 8067.
| Crossref | GoogleScholarGoogle Scholar |
[36]
D. J. Erickson ,
R. G. Zepp ,
E. Atlas ,
Ozone depletion and the air-sea exchange of greenhouse and chemically reactive trace gases.
Chemosphere 2000
, 2, 137.
[37]
[38]
[39]
B. Bonsang ,
M. Kanakidou ,
Non-methane hydrocarbon variability during the FIELDVOC’94 campaign in Portugal.
Chemosphere 2001
, 3, 259.
[40]
[41]