Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Trace metal dynamic speciation studied by scanned stripping chronopotentiometry (SSCP)

Rute F. Domingos A B E , Rócio Lopez A C and José P. Pinheiro D
+ Author Affiliations
- Author Affiliations

A CMQA, Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, PT-8005-139 Faro, Portugal.

B Present address: Faculté des arts et des sciences, Département de chimie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada.

C Present address: Instituto de Investigaciones Agrobiológicas de Galicia, CSIC, Avd. De Vigo s/n, Campus Universitario Sur, E-15780 Santiago de Compostela, Spain.

D CBME, Departamento de Química e Bioquímica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, PT-8005-139 Faro, Portugal.

E Corresponding author. Email: ri.ferreira.domingos@umontreal.ca

Environmental Chemistry 5(1) 24-32 https://doi.org/10.1071/EN07088
Submitted: 28 November 2007  Accepted: 4 January 2008   Published: 22 February 2008

Environmental context. Natural aquatic systems are subject to changing conditions and practically never reach chemical equilibrium. Therefore, a quantitative understanding of the interaction of the trace metals with heterogeneous samples and their kinetic characteristics requires the dynamic characterisation of trace metal speciation. We show that scanned stripping chronopotentiometry (SSCP) is able to discriminate the dynamic nature of the complexes, although it still overestimates the average stability constants obtained from the SSCP wave characteristics using the Freundlich isotherm to account for the chemical heterogeneity.

Abstract. The ability of scanned stripping chronopotentiometry (SSCP) to obtain dynamic information for metal complexation with heterogeneous colloidal ligands was evaluated by measurements of lead(II) and cadmium(II) complexation by humic and fulvic acids extracted from an ombrotrophic peat bog. Average stability constants were calculated, using a first order chemical heterogeneity approach, and compared with those obtained by an ion selective electrode (ISE). SSCP average stability constants were overestimated in comparison to those obtained by the ISE, which suggests that the first order heterogeneity approach did not fully account for the ligand heterogeneity. However, the comparison of the stability constants obtained from the two SSCP signals (the shift of the half-wave potential and the decrease of transition time) provides information about the dynamic nature of the metal complexes formed with the humic matter. These results were in reasonable agreement with the theoretical predictions of the dynamic theory for colloidal systems.

Additional keywords: colloidal dispersion, humic substances, lability, scanned stripping chronopotentiometry, speciation.


Acknowledgements

This work was performed within the framework of the project POCI/QUI/56845/2004. A Ph.D. grant to Rute Ferreira Domingos (SFRH/BD/8366/2002) and a Pos-Doc grant to Rócio Lopez (SFRH/BPD/20176/2004) from Fundação para a Ciência e Tecnologia, Portugal are acknowledged.


References


[1]   Stumm W. , Morgan J. J. , in Aquatic Chemistry 1981 (Wiley: New York).

[2]   Buffle J. , in Complexation Reactions in Aquatic Systems: an Analytical Approach 1998 (Ellis Horwood: Chichester).

[3]   H. P. van Leeuwen , J. Buffle , Voltammetry of heterogeneous metal complex systems: Theoretical analysis of the effects of association/dissociation kinetics and the ensuing lability criteria. J. Electroanal. Chem. 1990 , 296,  359.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   Köster W. , van Leeuwen H. P. , in Physicochemical Kinetics and Transport at the Biointeface: Setting the Stage (Eds H. P. van Leeuwen, W. Köster). In Physicochemical Kinetics and Transport at Biointerfaces, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (Eds J. Buffle, H. P. van Leeuwen) 2004, Vol. 9, p. 1 (Wiley: Chichester, UK).

[5]   Galceran J. , van Leeuwen H. P. , in Dynamics of Biouptake Processes: the Role of Transport, Adsorption and Internalisation (Eds H. P. van Leeuwen, W. Köster). In Physicochemical Kinetics and Transport at Biointerfaces, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (Eds J. Buffle, H. P. van Leeuwen) 2004, Vol. 9, p. 147 (Wiley: Chichester, UK).

[6]   Mota A. M. , Correia dos Santos M. M. , in Metal Speciation and Bioavailability (Eds A. Tessier, D. Turner) 1995, Ch. 5 (Wiley: New York).

[7]   R. F. Domingos , M. F. Benedetti , J. P. Croué , J. P. Pinheiro , Electrochemical methodology to study labile trace metal/natural organic matter complexation at low concentration levels in natural waters. Anal. Chim. Acta 2004 , 521,  77.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   Buffle J. , Parthasarathy N. , Djane N.-K. , Mathiasson L. , in Permeation Liquid Membranes for Field Analysis and Speciation of Trace Compounds in Waters (Eds J. Buffle, G. Horvai). In In Situ Monitoring of Aquatic Systems, Chemical Analysis and Speciation, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (Eds J. Buffle, H. P. Van Leeuwen) 2000, Vol. 6, p. 407 (Wiley: Chichester, UK).

[9]   L. Tomaszewski , J. Buffle , J. Galceran , Theoretical and analytical characterization of a flow-through permeation liquid membrane with controlled flux for metal speciation measurements. Anal. Chem. 2003 , 75,  893.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[10]   V. Slaveykova , N. Parthasarathy , J. Buffle , K. J. Wilkinson , Permeation liquid membrane as a tool for monitoring bioavailable Pb in natural waters. Sci. Total Environ. 2004 , 328,  55.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[11]   E. J. M. Temminghoff , A. C. C. Plette , R. van EcK , W. H. van Riemsdijk , Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan membrane technique. Anal. Chim. Acta 2000 , 417,  149.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   L. P. Weng , W. H. van Riemsdijk , E. J. M. Temminghoff , Kinetic aspects of Donnan membrane technique for measuring free trace cation concentration. Anal. Chem. 2005 , 77,  2852.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[13]   D. G. Kinniburgh , W. H. van Riemsdijk , L. K. Koopal , M. Borkovec , M. F. Benedetti , M. J. Avena , Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf. A 1999 , 151,  147.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   I. Christl , C. J. Milne , D. G. Kinniburgh , R. Kretzschamn , Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding. Environ. Sci. Technol. 2001 , 35,  2512.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[15]   Freiser H. , in Ion Selective Electrodes in Analytical Chemistry (Ed. H. Freiser) 1981 (Plenum: New York).

[16]   Koryta J. , Stulik K. , Ion Selective Electrodes 1983 (Cambridge University Press: Cambridge).

[17]   R. F. Domingos , M. F. Benedetti , J. P. Pinheiro , Application of permeation liquid membrane and scanned stripping chronopotentiometry to metal speciation analysis of colloidal complexes. Anal. Chim. Acta 2007 , 589,  261.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[18]   T. M. Florence , Electrochemical approaches to trace element speciation in waters. A review Analyst 1986 , 111,  489.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   T. M. Florence , Trace element speciation by anodic stripping voltammetry. Analyst 1992 , 117,  551.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[20]   T. M. Florence , G. M. Morrison , J. L. Stauber , Determination of trace element speciation and the role of speciation in aquatic toxicity. Sci. Total Environ. 1992 , 125,  1.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[21]   Buffle J. , Tercier-Waeber M.-L. , in In Situ Monitoring of Aquatic Systems. Chemical Analysis and Speciation (Eds J. Buffle, G. Horvai), IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, 2000, Vol. 6, p. 279 (Wiley: Chichester, UK).

[22]   F. C. Anson , J. B. Flanagan , K. Takahashi , A. Yamada , Some virtues of differential pulse polarography in examining adsorbed reactants. J. Electroanal. Chem. 1976 , 67,  253.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   J. Buffle , Calculation of the surface concentration of the oxidized metal during the stripping step in the anodic stripping techniques and its influence on speciation measurements in natural waters. J. Electroanal. Chem. 1981 , 125,  273.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   R. M. Town , H. P. van Leeuwen , Effects of adsorption in stripping chronopotentiometric metal speciation analysis. J. Electroanal. Chem. 2002 , 523,  1.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   R. M. Town , H. P. van Leeuwen , Significance of wave form parameters in stripping chronopotentiometric metal speciation analysis. J. Electroanal. Chem. 2002 , 535,  11.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   H. P. van Leeuwen , R. M. Town , Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 1. Fundamental features. J. Electroanal. Chem. 2002 , 536,  129.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   R. M. Town , H. P. van Leeuwen , Dynamic speciation analysis of heterogeneous metal complexes with natural ligands by stripping chronopotentiometry at scanned deposition potential (SSCP). Aust. J. Chem. 2004 , 57,  983.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   J. P. Pinheiro , H. P. van Leeuwen , Scanned stripping chronopotentiometry of metal complexes: lability diagnosis and stability computation. J. Electroanal. Chem. 2004 , 570,  69.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   H. P. van Leeuwen , R. M. Town , Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 4. The kinetic current regime. J. Electroanal. Chem. 2004 , 561,  67.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   H. P. van Leeuwen , R. M. Town , Electrochemical metal speciation analysis of chemically heterogeneous samples: the outstanding features of stripping chronopotentiometry at scanned deposition potential. Environ. Sci. Technol. 2003 , 37,  3945.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[31]   J. M. Diaz-Cruz , C. Arino , M. Esteban , E. Cassassas , Polarography and anodic stripping voltammetry of metal-polycarboxylate complexes: phenomenological relationship between limiting currents and hydrodynamic mass transport. J. Electroanal. Chem. 1992 , 333,  33.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   D. Gondar , R. López , S. Fiol , J. M. Antelo , F. Arce , Effect of soil depth on acid properties of humic substances extracted from an ombrotrophic peat bog in northwest Spain. Eur. J. Soil Sci. 2005 , 56,  793.
         open url image1

[33]   D. Gondar , R. López , S. Fiol , J. M. Antelo , F. Arce , Cadmium, lead, and copper binding to humic acid and fulvic acid extracted from an ombrotrophic peat bog. Geoderma 2006 , 135,  196.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   J. L. Garcés , F. Mas , J. Cecília , J. Galceran , J. Salvador , J. Puy , Interpretation of speciation measurements on labile metal–macromolecular systems by voltammetric techniques. Analyst 1996 , 121,  1855.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   C. J. Milne , D. G. Kinniburgh , J. C. M. de Wit , W. H. van Riemsdijk , L. K. Koopal , Analysis of metal-ion binding by a peat humic acid using a simple electrostatic model. J. Colliod Interface Sci. 1995 , 175,  448.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   J. P. Pinheiro , A. M. Mota , M. F. Benedetti , Lead and calcium binding to fulvic acids: salt effect and competition. Environ. Sci. Technol. 1999 , 33,  3398.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   J. Puy , J. Galceran , J. Salvador , J. Cecília , M. S. Diaz-Cruz , M. Esteban , F. Mas , Voltammetry of labile metal-macromolecular systems for any ligand-to-metal ratio, including adsorption phenomena. The role of the stability constant. J. Electroanal. Chem. 1994 , 374,  223.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   J. P. Pinheiro , R. F. Domingos , M. Minor , H. P. van Leeuwen , Metal speciation dynamics in colloidal ligand dispersions. Part 3: Lability features of steady-state systems. J. Electroanal. Chem. 2006 , 596,  57.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   J. F. L. Duval , K. J. Wilkinson , H. P. van Leeuwen , J. Buffle , Humic substances are soft and permeable: evidence from their electrophoretic mobilities. Environ. Sci. Technol. 2005 , 39,  6435.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[40]   H. M. V. M. Soares , P. C. F. L. Conde , A. A. N. Almeida , M. T. S. D. Vasconcelos , Evaluation of N-substituted aminosulfonic acid pH buffers with a morpholinic ring for cadmium and lead speciation studies by electroanalytical techniques. Anal. Chim. Acta 1999 , 394,  325.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[41]   H. M. V. M. Soares , S. C. Pinho , M. G. R. T. M. Barros , Influence of N-substituted aminosulfonic acids with a morpholinicring pH buffers on the redox processes of copper or zinc ions: a contribution to speciation studies. Electroanalysis 1999 , 11,  1312.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[42]   C. J. Milne , D. G. Kinniburgh , W. H. van Riemsdijk , E. Tipping , Generic nica-donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003 , 37,  958.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[43]   Swift R. S. , in Organic Matter Characterization in Methods of Soil Analysis. Part 3 Chemical Methods (Ed. D. L. Sparks) 1996 (SSSA Book Series: Madison).

[44]   D. Gondar , R. López , S. Fiol , J. M. Antelo , F. Arce , Characterization and acid–base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma 2005 , 126,  367.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[45]   Stevenson F. J. , Humus Chemistry. Genesis, Composition, Reactions, 2nd edn 1994 (Wiley: New York).

[46]   D. Gondar , A. Iglesias , R. López , S. Fiol , J. M. Antelo , F. Arce , Copper binding by peat fulvic and humic acids extracted from two horizons of an ombrotrophic peat bog. Chemosphere 2006 , 63,  82.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[47]   J. P. Pinheiro , R. F. Domingos , R. López , R. Brayner , F. Fiévet , K. Wilkinson , Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP). Colloids Surf. A 2007 , 295,  200.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1




Accessory material

An example of the SSCP raw data obtained for the lead interaction with humic and fulvic acid at 0.01 and 0.1 M ionic strength is available from the author or Environmental Chemistry.