Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
FOREWORD

Foreword to the Special Issue from the Interfaces Against Pollution 2016 Conference: Environmental Challenges and Opportunities

T. David Waite A , Jérôme F.L. Duval B , Michael Sander C , Jaume Puy D E , Josep Galceran D E and Carlos Rey-Castro D E
+ Author Affiliations
- Author Affiliations

A School of Civil and Environmental Engineering, the University of New South Wales, Sydney, NSW 2052, Australia.

B CNRS, Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.

C ETH Zurich Universitaetstrasse 16, CHN H 50.3, Switzerland.

D Departament de Química, Universitat de Lleida and AGROTECNIO, Rovira Roure 191, E-25198 Lleida, Spain.

E Corresponding author. Email: jpuy@quimica.udl.es; galceran@quimica.udl.cat; carlos.rey@quimica.udl.cat

Environmental Chemistry 14(5) i-ii https://doi.org/10.1071/ENv14n5_FO
Published: 1 September 2017


References

[1]  B. González, R. Trujillano, M. A. Vicente, V. Rives, E. H. de Faria, K. J. Ciuffi, S. A. Korili, A. Gil, Doped Ti-pillared clays as effective adsorbents – application to methylene blue and trimethoprim removal Environ. Chem. 2017, 14, 267.
Doped Ti-pillared clays as effective adsorbents – application to methylene blue and trimethoprim removalCrossref | GoogleScholarGoogle Scholar |

[2]  J. Cancelo-González, D. Martiñá-Prieto, D. Hernández-Huerta, M. T. Barral, Metal removal by pine bark compost using a permeable reactive barrier device at laboratory scale Environ. Chem. 2017, 14, 310.
D. Martiñá-Prieto, D. Hernández-Huerta, M. T. Barral, Metal removal by pine bark compost using a permeable reactive barrier device at laboratory scaleCrossref | GoogleScholarGoogle Scholar |

[3]  T. D. Pham, T. T. Do, V. L. Ha, T. H. Y. Doan, T. A. H. Nguyen, T. D. Mai, M. Kobayashi, Y. Adachi, Adsorptive removal of ammonium ion from aqueous solution using surfactant-modified alumina Environ. Chem. 2017, 14, 327.
Adsorptive removal of ammonium ion from aqueous solution using surfactant-modified aluminaCrossref | GoogleScholarGoogle Scholar |

[4]  J. M. Arroyave, C. C. Waiman, G. P. Zanini, W. Tan, M. J. Avena, Desorption rate of glyphosate from goethite as affected by different entering ligands: hints on the desorption mechanism Environ. Chem. 2017, 14, 288.
Desorption rate of glyphosate from goethite as affected by different entering ligands: hints on the desorption mechanismCrossref | GoogleScholarGoogle Scholar |

[5]  T. Preočanin, D. Namjesnik, M. A. Brown, J. Lützenkirchen, The relationship between inner surface potential and electrokinetic potential from an experimental and theoretical point of view Environ. Chem. 2017, 14, 295.
The relationship between inner surface potential and electrokinetic potential from an experimental and theoretical point of viewCrossref | GoogleScholarGoogle Scholar |

[6]  A. V. Delgado, S. Ahualli, M. M. Fernández, M. A. González, G. R. Iglesias, J. F. Vivo-Vilches, M. L. Jiménez, Geometrical properties of materials for energy production by salinity exchange Environ. Chem. 2017, 14, 279.
Geometrical properties of materials for energy production by salinity exchangeCrossref | GoogleScholarGoogle Scholar |

[7]  I. Mannelli, D. Janner, F. Sagués, R. Reigada, Assessing the optimal conditions for surface-mediated disinfection of Influenza A virus solutions Environ. Chem. 2017, 14, 319.
Assessing the optimal conditions for surface-mediated disinfection of Influenza A virus solutionsCrossref | GoogleScholarGoogle Scholar |

[8]  H. Bertin, E. Del Campo Estrada, O. Atteia, Foam placement for soil remediation Environ. Chem. 2017, 14, 338.
Foam placement for soil remediationCrossref | GoogleScholarGoogle Scholar |