Doped Ti-pillared clays as effective adsorbents – Application to methylene blue and trimethoprim removal
Beatriz González A , Raquel Trujillano A , Miguel A. Vicente A D , Vicente Rives A , Emerson H. de Faria B , Katia J. Ciuffi B , Sophia A. Korili C and Antonio Gil CA Grupo de Investigación Reconocido Química del Estado Sólido, Materiales y Catálisis Heterogénea (GIR-QUESCAT), Departamento de Química Inorgánica, Universidad de Salamanca, 37008 Salamanca, Spain.
B Universidade de Franca, Avenida Dr Armando Salles Oliveira, Parque Universitário, 201, 14404-600, Franca/SP, Brazil.
C Departamento de Química Aplicada, Universidad Pública de Navarra, Campus de Arrosadía, E-31006-Pamplona, Spain.
D Corresponding author. Email: mavicente@usal.es
Environmental Chemistry 14(5) 267-278 https://doi.org/10.1071/EN16192
Submitted: 25 November 2016 Accepted: 18 February 2017 Published: 9 March 2017
Environmental context. Water is an essential compound for life; however, several factors limit the amount available for human consumption. Every day, thousands of pollutants are discharged into drinking water. Here, new materials that are efficient as adsorbents and photocatalysts for pollutants are reported.
Abstract. Montmorillonite was treated with Ti-based solutions doped with various transition metal cations, leading after calcination at 500 °C to new doped Ti-pillared montmorillonite solids. These solids were characterised by elemental chemical analysis, powder X-ray diffraction, Fourier-transform (FT)-IR spectroscopy, thermal analyses, nitrogen adsorption, acidity evaluation and electron microscopy. The performance of these solids in the degradation of methylene blue and the adsorption of trimethoprim was evaluated.
Additional keywords: montmorillonite, Ti-PILC, trimethoprim adsorption.
References
[1] M. Qadir, D. Wichelns, L. Raschid-Sally, P. G. McCornick, P. Drechsel, A. Bahri, P. S. Minhas, The challenges of wastewater irrigation in developing countries. Agric. Water Manage. 2010, 97, 561.| The challenges of wastewater irrigation in developing countries.Crossref | GoogleScholarGoogle Scholar |
[2] J. M. Guadayol, J. Caixach, J. Ribé, J. Cabanas, Extraction, separation and identification of volatile organic compounds from paprika oleoresin (Spanish type). J. Agric. Food Chem. 1997, 45, 1868.
| Extraction, separation and identification of volatile organic compounds from paprika oleoresin (Spanish type).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlWktLY%3D&md5=a0dc1efb4110b8c60149697b1c47b615CAS |
[3] H. Park, C. Vecitis, M. R. Hoffmann, Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J. Phys. Chem. C 2009, 113, 7935.
| Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlygs78%3D&md5=a82aea8367ce550b3cb83ef6440acd7cCAS |
[4] M. E. Williams, J. A. Hestekin, C. N. Smothers, D. Bhattacharyya, Separation of organic pollutants by reverse osmosis and nanofiltration membranes: mathematical models and experimental verification. Ind. Eng. Chem. Res. 1999, 38, 3683.
| Separation of organic pollutants by reverse osmosis and nanofiltration membranes: mathematical models and experimental verification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlyqtbY%3D&md5=7c5211d6790e0aa06a5d60e53f81fb34CAS |
[5] L. Khenniche, F. Aissani, Preparation and characterization of carbons from coffee residue: adsorption of salicylic acid on the prepared carbons. J. Chem. Eng. Data 2010, 55, 728.
| Preparation and characterization of carbons from coffee residue: adsorption of salicylic acid on the prepared carbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqu7rO&md5=8564dcceb0c6232925322ed1555d4863CAS |
[6] E. Fernandez, D. Hugi-Cleary, M. Lopez-Ramon, F. Stoeckli, Adsorption of phenol from dilute and concentrated aqueous solutions by activated carbons. Langmuir 2003, 19, 9719.
| Adsorption of phenol from dilute and concentrated aqueous solutions by activated carbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFOiur0%3D&md5=61195be3b1e0c415506f8f451c4e476dCAS |
[7] I. Efremenko, M. Sheintuch, Predicting solute adsorption on activated carbon: phenol. Langmuir 2006, 22, 3614.
| Predicting solute adsorption on activated carbon: phenol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitFGrsr4%3D&md5=276bc5e76fc0bad49ae63fac20894bb8CAS |
[8] S. R. Hughes, P. Kay, L. E. Brown, Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ. Sci. Technol. 2013, 47, 661.
| Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSntrnL&md5=e7ba5d3044d1a532ce1a53ef2a3d501bCAS |
[9] E. Marti, E. Variatza, J. L. Balcazar, The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014, 22, 36.
| The role of aquatic ecosystems as reservoirs of antibiotic resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKisrbM&md5=d290c7d478808200803e6bc371eb72deCAS |
[10] I. Oller, S. Malato, J. A. Sánchez–Pérez, Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review. Sci. Total Environ. 2011, 409, 4141.
| Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyqtLzM&md5=3aaa0500ed7a26ce43f55ddf701f7ceeCAS |
[11] R. Hirsch, T. Ternes, K. Haberer, K. L. Kratz, Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109.
| Occurrence of antibiotics in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVKmtQ%3D%3D&md5=e6ea6109a38f71efeb9c6a6734894361CAS |
[12] R. Lindberg, P.-A. Jarnheimer, B. Olsen, M. Johansson, M. Tysklind, Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards. Chemosphere 2004, 57, 1479.
| Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1akuro%3D&md5=585e59600d8ee7b3a58bf881ac050f49CAS |
[13] A. L. Batt, D. S. Aga, Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and ground water contamination. Anal. Chem. 2005, 77, 2940.
| Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and ground water contamination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisleqsr4%3D&md5=e3ea1522c1ac391f303d28e2cf20a8e3CAS |
[14] D. W. Kolpin, E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber, H. T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202.
| Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhslOitLg%3D&md5=09f6ee8b68f196ade2ddc2b22105e349CAS |
[15] S. D. Costanzo, J. Murby, J. Bates, Ecosystem response to antibiotics entering the aquatic environment. Mar. Pollut. Bull. 2005, 51, 218.
| Ecosystem response to antibiotics entering the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2gtLc%3D&md5=e9e3c183b529e0739f33bba555ac0a3bCAS |
[16] S. H. Kim, H. K. Shon, H. H. Ngo, Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon. J. Ind. Eng. Chem. 2010, 16, 344.
| Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFymt7c%3D&md5=c65197448fe199baebfd457d4cac01e5CAS |
[17] H. Liu, J. Zhang, N. Bao, C. Cheng, L. Ren, C. Zhang, Textural properties and surface chemistry of lotus stalk-derived activated carbons prepared using different phosphorus oxyacids: adsorption of trimethoprim. J. Hazard. Mater. 2012, 235–236, 367.
| Textural properties and surface chemistry of lotus stalk-derived activated carbons prepared using different phosphorus oxyacids: adsorption of trimethoprim.Crossref | GoogleScholarGoogle Scholar |
[18] L. Nielsen, T. J. Bandosz, Analysis of sulfamethoxazole and trimethoprim adsorption on sewage sludge and fish waste derived adsorbents. Microporous Mesoporous Mater. 2016, 220, 58.
| Analysis of sulfamethoxazole and trimethoprim adsorption on sewage sludge and fish waste derived adsorbents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVCnu7zE&md5=a615ec6ae4502619d34a5495fa0d1552CAS |
[19] Z. Bekçi, Y. Seki, M. K. Yurdakoç, Equilibrium studies for trimethoprim adsorption on montmorillonite KSF. J. Hazard. Mater. 2006, 133, 233.
| Equilibrium studies for trimethoprim adsorption on montmorillonite KSF.Crossref | GoogleScholarGoogle Scholar |
[20] C. I. Pearce, J. R. Lloyd, J. T. Guthrie, The removal of colour from textiles wastewater using whole bacterial cells: a review. Dyes Pigments 2003, 58, 179.
| The removal of colour from textiles wastewater using whole bacterial cells: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFGksL4%3D&md5=64c9dd2555481d9de5b830a586fd7f6bCAS |
[21] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textiles effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247.
| Remediation of dyes in textiles effluent: a critical review on current treatment technologies with a proposed alternative.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Ortbk%3D&md5=347849c6330eefb533a2e51f38da4458CAS |
[22] I. M. Banat, P. Nigam, D. Singh, R. Marchant, Microbial decolorization of textile-dye-containing effluents: a review. Bioresour. Technol. 1996, 58, 217.
| Microbial decolorization of textile-dye-containing effluents: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitV2isbo%3D&md5=38678317d692709688ff3ef376b696ebCAS |
[23] V. S. Ferreira-Leitao, M. E. Andrade de Carvalho, E. P. S. Bon, Lignin peroxidase efficiency for methylene blue decolouration: comparison to reported methods. Dyes Pigments 2007, 74, 230.
| Lignin peroxidase efficiency for methylene blue decolouration: comparison to reported methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Kku7nJ&md5=8a541905f28970af29ec877da5426921CAS |
[24] K. Rida, S. Bouraoui, S. Hadnine, Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Appl. Clay Sci. 2013, 83–84, 99.
| Adsorption of methylene blue from aqueous solution by kaolin and zeolite.Crossref | GoogleScholarGoogle Scholar |
[25] D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Technol. 2007, 98, 14.
| Experimental and kinetic studies on methylene blue adsorption by coir pith carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVCis7Y%3D&md5=95b635af833f649f1f27aa0259b7ed54CAS |
[26] S. Miao, Z. Liu, B. Han, J. Zhang, X. Yu, J. Du, Z. Sun, Synthesis and characterization of TiO2–montmorillonite nanocomposites and their application for removal of methylene blue. J. Mater. Chem. 2006, 16, 579.
| Synthesis and characterization of TiO2–montmorillonite nanocomposites and their application for removal of methylene blue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVymsw%3D%3D&md5=36c415388d6dc9aea57f0a4a79bcab84CAS |
[27] A. Gil, M. A. Vicente, S. A. Korili, R. Trujillano, Pillared Clays and Related Catalysts 2010 (Springer: Heidelberg).
[28] M. A. Vicente, A. Gil, F. Bergaya, Pillared clays and clay minerals. In ‘Handbook of Clay Science, 2nd Edition, Part A: Fundamentals’. (Eds F. Bergaya, G. Lagaly) 2013, pp. 523–557 (Elsevier: Amsterdam).
[29] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 2014, 114, 9919.
| Understanding TiO2 photocatalysis: mechanisms and materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyjtb7L&md5=c689e002da952d6df03ec6f24987a4eaCAS |
[30] K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. Chem. 2012, 13, 169.
| TiO2 photocatalysis: design and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFWqt78%3D&md5=22e00430bece297186a3efe9c9b043d9CAS |
[31] L. V. Barbosa, L. Marçal, E. J. Nassar, P. S. Calefi, M. A. Vicente, R. Trujillano, V. Rives, A. Gil, S. Korili, K. J. Ciuffi, E. H. de Faria, Kaolinite–titanium oxide nanocomposites prepared via sol–gel as heterogeneous photocatalysts for dyes degradation. Catal. Today 2015, 246, 133.
| Kaolinite–titanium oxide nanocomposites prepared via sol–gel as heterogeneous photocatalysts for dyes degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslOru7vF&md5=e657e695dd34a6d4740ee5c3fcde8a6fCAS |
[32] K. Kočí, V. Matejka, P. Kovár, Z. Lacny, L. Obalová, Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction. Catal. Today 2011, 161, 10.
| Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction.Crossref | GoogleScholarGoogle Scholar |
[33] L. Chmielarz, P. Kuśtrowski, Z. Piwowarska, B. Dudek, B. Gil, M. Michalik, Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process. Appl. Catal. B 2009, 88, 331.
| Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlKqu7k%3D&md5=82fe059b89afb3d9ef6c48e4ff9b063dCAS |
[34] B. González-Rodríguez, R. Trujillano, V. Rives, M. A. Vicente, A. Gil, S. A. Korili, Structural, textural and acidic properties of Cu-, Fe- and Cr-doped Ti-pillared montmorillonites. Appl. Clay Sci. 2015, 118, 124.
| Structural, textural and acidic properties of Cu-, Fe- and Cr-doped Ti-pillared montmorillonites.Crossref | GoogleScholarGoogle Scholar |
[35] J. T. Lin, S. J. Jong, S. Cheng, A new method for preparing microporous titanium pillared clays. Microporous Mater. 1993, 1, 287.
| A new method for preparing microporous titanium pillared clays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1yjtr0%3D&md5=314003caf9af84fa0d8645efb858500eCAS |
[36] H. Einaga, Hydrolysis of titanium(IV) in aqueous (Na,H)Cl solution. J. Chem. Soc. Dalton Trans. 1979, 1917.
| 1:CAS:528:DyaL3cXkvVWjtw%3D%3D&md5=25818fba4172106d3d46d81ed8f1722aCAS |
[37] S. Brunauer, P. H. E. Emmet, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 20, 1553.
| Adsorption of gases in multimolecular layers.Crossref | GoogleScholarGoogle Scholar |
[38] B. C. Lippens, J. H. De Boer, Studies on pore systems in catalysis. J. Catal. 1965, 4, 319.
| Studies on pore systems in catalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXktVKqtr8%3D&md5=8c0193e4a8d4ee7a04e80fbba52b91d9CAS |
[39] F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids – Principles, Methodology and Applications 1998 (Academic Press: London).
[40] T. Barzetti, E. Selli, D. Moscotti, L. Forni, Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. J. Chem. Soc., Faraday Trans. 1996, 92, 1401.
| Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVKktro%3D&md5=0f9636074a56b5aca294869d64f591d3CAS |
[41] F. J. del Rey-Pérez-Caballero, G. Poncelet, Microporous 18 Å Al-pillared vermiculites: preparation and characterization. Microporous Mesoporous Mater. 2000, 37, 313.
| Microporous 18 Å Al-pillared vermiculites: preparation and characterization.Crossref | GoogleScholarGoogle Scholar |
[42] C. A. Emeis, Determination of integrated molar extinction coefficients for absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 1993, 141, 347.
| Determination of integrated molar extinction coefficients for absorption bands of pyridine adsorbed on solid acid catalysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltVCisLs%3D&md5=95212cdeb1413870e23caaa15ba8be45CAS |
[43] I. Langmuir, The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221.
| The constitution and fundamental properties of solids and liquids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaC28Xhs1egsQ%3D%3D&md5=fc9705f023266aea4051d78d2bf196c8CAS |
[44] H. M. F. Freundlich, Over the adsorption in solution. Z. Phys. Chem. 1906, 57, 385.
| 1:CAS:528:DyaD28XhtVCl&md5=5d4625b6cc9326dc09fda254a65d4134CAS |
[45] J. Toth, State equation of the solid–gas interface layers. Acta Chim. Acad. Sci. Hung. 1971, 69, 311.
| 1:CAS:528:DyaE3MXkvFWntro%3D&md5=2d473adcfce019be47b45ec0c7576344CAS |
[46] H. Guan, G. Guiochon, Properties of some C18 stationary phases for preparative liquid chromatography: II. Column efficacy. J. Chromatogr. A 1994, 687, 201.
| Properties of some C18 stationary phases for preparative liquid chromatography: II. Column efficacy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt1Sktrc%3D&md5=c3ec0630a00111dae5ee7d1cc50dee27CAS |
[47] F. Gritti, G. Gotmar, B. J. Stanley, G. Guiochon, Determination of single component isotherms and affinity energy distribution by chromatography. J. Chromatogr. A 2003, 988, 185.
| Determination of single component isotherms and affinity energy distribution by chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVCgsbw%3D&md5=22325d6abe38c0ba4ec8e03ef85ea713CAS |
[48] M. A. Vicente-Rodríguez, M. Suárez Barrios, M. A. Bañares Muñoz, J. D. López González, Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates. Spectrochim. Acta A 1996, 52, 1685.
| Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates.Crossref | GoogleScholarGoogle Scholar |
[49] H. L. Del Castillo, A. Gil, P. Grange, Influence of the nature of titanium alkoxide and of the acid of hydrolysis in the preparation of titanium-pillared montmorillonites. J. Phys. Chem. Solids 1997, 58, 1053.
| Influence of the nature of titanium alkoxide and of the acid of hydrolysis in the preparation of titanium-pillared montmorillonites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVCrtrw%3D&md5=2ade7c5177005899466d44f1c61a65a0CAS |
[50] M. A. Vicente, M. A. Bañares-Muñoz, R. Toranzo, L. M. Gandía, A. Gil, Influence of the Ti precursor on the properties of Ti-pillared smectites. Clay Miner. 2001, 36, 125.
| Influence of the Ti precursor on the properties of Ti-pillared smectites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1Onurs%3D&md5=23cd2b02df77ebe42f17a4799c6903c8CAS |
[51] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603.
| Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvFWrtb4%3D&md5=18fdee867b9eb26a4db51a4322e2a266CAS |
[52] J. Tauc, Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 1970, 5, 721.
| Absorption edge and internal electric fields in amorphous semiconductors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXlt1Crsbc%3D&md5=898cf5d47424ebb660f2d626ecca94d0CAS |
[53] M. A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO2. J. Appl. Phys. 1977, 48, 1914.
| Photoelectrolysis and physical properties of the semiconducting electrode WO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhvFKrurg%3D&md5=5d01032f18484f90356f837e5e240344CAS |
[54] G. Rytwo, S. Nir, L. Margulies, Interactions of monovalent organic cations with montmorillonite: adsorption studies and model calculations. Soil Sci. Soc. Am. J. 1995, 59, 554.
| Interactions of monovalent organic cations with montmorillonite: adsorption studies and model calculations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltlSjs7k%3D&md5=5254e30c0e268451d338baa30b9f16ddCAS |
[55] L. A. Galeano, M. A. Vicente, A. Gil, Catalytic degradation of organic pollutants in aqueous streams by mixed Al/M-pillared clays (M = Fe, Cu, Mn). Catal. Rev. 2014, 56, 239.
| Catalytic degradation of organic pollutants in aqueous streams by mixed Al/M-pillared clays (M = Fe, Cu, Mn).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWlsrzO&md5=eea594172691463097f665811727cb7eCAS |
[56] Y. Xi, M. Mallavarapu, R. Naidu, Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl. Clay Sci. 2010, 48, 92.
| Preparation, characterization of surfactants modified clay minerals and nitrate adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFegtbo%3D&md5=a24a84210feec1ac1fa35aa229900328CAS |
[57] S. Lagergren, About the theory of so-called adsorption of soluble substances. K. Sven. Vetensk. Akad. Handl. 1898, 24, 1.
[58] Y. S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451.
| Pseudo-second order model for sorption processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1Omtbk%3D&md5=87df1f6b7d20937f4ba8e36486ff3152CAS |
[59] C. H. Giles, D. Smith, A. Huitson, A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755.
| A general treatment and classification of the solute adsorption isotherm. I. Theoretical.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXktlSjs7w%3D&md5=fb3041b99869d269abc79cc2007e845aCAS |
[60] S. Z. Falone, E. M. Vieira, Adsorption/desorption of the explosive tetryl in peat and yellow–red argissol. Quim. Nova 2004, 27, 849.
| Adsorption/desorption of the explosive tetryl in peat and yellow–red argissol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyhs7zO&md5=1a520a792683e18bab7f4c6556fd8215CAS |