Foreword to the Special Issue from the Interfaces Against Pollution 2016 Conference: Environmental Challenges and Opportunities
T. David Waite A , Jérôme F.L. Duval B , Michael Sander C , Jaume Puy D E , Josep Galceran D E and Carlos Rey-Castro D E
+ Author Affiliations
- Author Affiliations
A School of Civil and Environmental Engineering, the University of New South Wales, Sydney, NSW 2052, Australia.
B CNRS, Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
C ETH Zurich Universitaetstrasse 16, CHN H 50.3, Switzerland.
D Departament de Química, Universitat de Lleida and AGROTECNIO, Rovira Roure 191, E-25198 Lleida, Spain.
E Corresponding author. Email: jpuy@quimica.udl.es; galceran@quimica.udl.cat; carlos.rey@quimica.udl.cat
Environmental Chemistry 14(5) i-ii https://doi.org/10.1071/ENv14n5_FO
Published: 1 September 2017
References
[1] B. González, R. Trujillano, M. A. Vicente, V. Rives, E. H. de Faria, K. J. Ciuffi, S. A. Korili, A. Gil, Doped Ti-pillared clays as effective adsorbents – application to methylene blue and trimethoprim removal Environ. Chem. 2017, 14, 267.| Doped Ti-pillared clays as effective adsorbents – application to methylene blue and trimethoprim removalCrossref | GoogleScholarGoogle Scholar |
[2] J. Cancelo-González, D. Martiñá-Prieto, D. Hernández-Huerta, M. T. Barral, Metal removal by pine bark compost using a permeable reactive barrier device at laboratory scale Environ. Chem. 2017, 14, 310.
| D. Martiñá-Prieto, D. Hernández-Huerta, M. T. Barral, Metal removal by pine bark compost using a permeable reactive barrier device at laboratory scaleCrossref | GoogleScholarGoogle Scholar |
[3] T. D. Pham, T. T. Do, V. L. Ha, T. H. Y. Doan, T. A. H. Nguyen, T. D. Mai, M. Kobayashi, Y. Adachi, Adsorptive removal of ammonium ion from aqueous solution using surfactant-modified alumina Environ. Chem. 2017, 14, 327.
| Adsorptive removal of ammonium ion from aqueous solution using surfactant-modified aluminaCrossref | GoogleScholarGoogle Scholar |
[4] J. M. Arroyave, C. C. Waiman, G. P. Zanini, W. Tan, M. J. Avena, Desorption rate of glyphosate from goethite as affected by different entering ligands: hints on the desorption mechanism Environ. Chem. 2017, 14, 288.
| Desorption rate of glyphosate from goethite as affected by different entering ligands: hints on the desorption mechanismCrossref | GoogleScholarGoogle Scholar |
[5] T. Preočanin, D. Namjesnik, M. A. Brown, J. Lützenkirchen, The relationship between inner surface potential and electrokinetic potential from an experimental and theoretical point of view Environ. Chem. 2017, 14, 295.
| The relationship between inner surface potential and electrokinetic potential from an experimental and theoretical point of viewCrossref | GoogleScholarGoogle Scholar |
[6] A. V. Delgado, S. Ahualli, M. M. Fernández, M. A. González, G. R. Iglesias, J. F. Vivo-Vilches, M. L. Jiménez, Geometrical properties of materials for energy production by salinity exchange Environ. Chem. 2017, 14, 279.
| Geometrical properties of materials for energy production by salinity exchangeCrossref | GoogleScholarGoogle Scholar |
[7] I. Mannelli, D. Janner, F. Sagués, R. Reigada, Assessing the optimal conditions for surface-mediated disinfection of Influenza A virus solutions Environ. Chem. 2017, 14, 319.
| Assessing the optimal conditions for surface-mediated disinfection of Influenza A virus solutionsCrossref | GoogleScholarGoogle Scholar |
[8] H. Bertin, E. Del Campo Estrada, O. Atteia, Foam placement for soil remediation Environ. Chem. 2017, 14, 338.
| Foam placement for soil remediationCrossref | GoogleScholarGoogle Scholar |