Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Kinetics of mercury accumulation by freshwater biofilms

Perrine Dranguet A B , Vera I. Slaveykova A and Séverine Le Faucheur A C
+ Author Affiliations
- Author Affiliations

A University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, Uni Carl Vogt, 66 Bvd Carl-Vogt, CH 1211, Geneva, Switzerland.

B Present address: Département de Sciences Biologiques, Université de Montréal, Pavillon Marie-Victorin C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada.

C Corresponding author. Email: severine.lefaucheur@unige.ch

Environmental Chemistry 14(7) 458-467 https://doi.org/10.1071/EN17073
Submitted: 28 October 2016  Accepted: 29 June 2017   Published: 22 January 2018

Environmental context. Mercury (Hg) is a major environmental contaminant due to its toxicity, accumulation and biomagnification along the food chain. We demonstrate that Hg accumulation by biofilms, one possible entry point for Hg into food webs, is rapid and depends on biofilm structure and composition. These findings have important implications for the understanding of Hg bioavailability and effects towards aquatic microorganisms.

Abstract. Mercury contamination is of high concern due to its bioaccumulation, toxicity and biomagnification along the food chain. Biofilms can accumulate Hg and contribute to its incorporation in freshwater food webs. Nevertheless, the accumulation kinetics of Hg by biofilms is not well described and understood. The aim of the present study was thus to gain mechanistic understanding of Hg accumulation by biofilms. Kinetics of Hg uptake by biofilms of different ages (e.g. different compositions) was characterised by determining Hg contents in biofilms with and without a cysteine-washing step. Hg accumulation was rapid in both biofilms, with the uptake rate constant of the younger biofilm 10 times higher than that of the older biofilm. Moreover, accumulated Hg reached a plateau at 24 h exposure in the younger biofilm, whereas it increased linearly in the older biofilm. The observed difference in Hg uptake by the studied biofilms is likely a result of the difference in biofilm thickness (and thus Hg diffusion inside the biofilm matrix) and microbial composition. These findings have important implications for the understanding of Hg bioavailability and effects towards aquatic microorganisms.

Additional keywords: hgcA gene, merA gene, mercury uptake rate constant, periphyton.


References

[1]  N. E. Selin, Global change and mercury cycling: challenges for implementing a global mercury treaty. Environ. Toxicol. Chem. 2014, 33, 1202.
Global change and mercury cycling: challenges for implementing a global mercury treaty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVKlsLw%3D&md5=1eb2331077343842b4c05609315db7aaCAS |

[2]  UNEP, Global Mercury Assessment: Sources, emissions, releases, and environmental transport. Report DTI/1636/GE. 2013. (UNEP Chemicals Branch: Geneva).

[3]  S. A. Counter, L. H. Buchanan, Mercury exposure in children: a review. Toxicol. Appl. Pharmacol. 2004, 198, 209.
Mercury exposure in children: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVSnsb4%3D&md5=583ce17726242d098c419fa52636dfddCAS |

[4]  D. A. Axelrad, D. C. Bellinger, L. M. Ryan, T. J. Woodruff, Dose-response relationship of prenatal mercury exposure and IQ: an integrative analysis of epidemiologic data. Environ. Health Perspect. 2007, 115, 609.
Dose-response relationship of prenatal mercury exposure and IQ: an integrative analysis of epidemiologic data.Crossref | GoogleScholarGoogle Scholar |

[5]  S. M. Ullrich, T. W. Tanton, S. A. Abdrashitova, Mercury in the aquatic environment: A review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol. 2001, 31, 241.
Mercury in the aquatic environment: A review of factors affecting methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsV2mt7c%3D&md5=8d76899cf7c0c69ba18f673e6ee0c490CAS |

[6]  T. Barkay, S. M. Miller, A. O. Summers, Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 2003, 27, 355.
Bacterial mercury resistance from atoms to ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVOlt7c%3D&md5=2ae1fae5b11415f06dc6d45dc93bb35dCAS |

[7]  J. R. D. Guimarães, M. Meili, L. D. Hylander, E. C. e. Silva, M. Roulet, J. B. N. Mauro, R. A. de Lemos, Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils. Sci. Total Environ. 2000, 261, 99.
Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils.Crossref | GoogleScholarGoogle Scholar |

[8]  M. Desrosiers, D. Planas, A. Mucci, Mercury methylation in the epilithon of boreal shield aquatic ecosystems. Environ. Toxicol. Chem. 2006, 40, 1540.
| 1:CAS:528:DC%2BD28XoslOluw%3D%3D&md5=3e17a5c5a802b84021fca22437eb48f8CAS |

[9]  S. Hamelin, M. Amyot, T. Barkay, Y. P. Wang, D. Planas, Methanogens: Principal methylators of mercury in lake periphyton. Environ. Sci. Technol. 2011, 45, 7693.
Methanogens: Principal methylators of mercury in lake periphyton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVylsbfM&md5=f6d67d1c767a1ac52eac8c23762ccafaCAS |

[10]  Y. Dominique, R. Maury-Brachet, B. Muresan, R. Vigouroux, S. Richard, D. Cossa, A. Mariotti, A. Boudou, Biofilm and mercury availability as key factors for mercury accumulation in fish (Curimata cyprinoides) from a disturbed Amazonian freshwater system. Environ. Toxicol. Chem. 2007, 26, 45.
Biofilm and mercury availability as key factors for mercury accumulation in fish (Curimata cyprinoides) from a disturbed Amazonian freshwater system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGgtw%3D%3D&md5=e10df8fb348cc8bd1a4a6a219ca5085cCAS |

[11]  S. Hamelin, D. Planas, M. Amyot, Spatio-temporal variations in biomass and mercury concentrations of epiphytic biofilms and their host in a large river wetland (Lake St. Pierre, QC, Canada). Environ. Pollut. 2015, 197, 221.
Spatio-temporal variations in biomass and mercury concentrations of epiphytic biofilms and their host in a large river wetland (Lake St. Pierre, QC, Canada).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFegsrjP&md5=e41046f0ca0260d0825087afba0d51f1CAS |

[12]  S. Žižek, M. Horvat, D. Gibicar, V. Fajon, M. J. Toman, Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining. Sci. Total Environ. 2007, 377, 407.
Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining.Crossref | GoogleScholarGoogle Scholar |

[13]  S. Žižek, R. Milacic, N. Kovac, R. Jacimovic, M. J. Toman, M. Horvat, Periphyton as a bioindicator of mercury pollution in a temperate torrential river ecosystem. Chemosphere 2011, 85, 883.
Periphyton as a bioindicator of mercury pollution in a temperate torrential river ecosystem.Crossref | GoogleScholarGoogle Scholar |

[14]  R. R. S. Correia, M. R. Miranda, J. R. D. Guimaraes, Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: Effect of different inhibitors. Environ. Res. 2012, 112, 86.
Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: Effect of different inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGhsb8%3D&md5=4480a9ebac423c8c6c8d62936fe6408dCAS |

[15]  C. C. Gilmour, M. Podar, A. L. Bullock, A. M. Graham, S. D. Brown, A. C. Somenahally, A. Johs, R. A. Hurt, K. L. Bailey, D. A. Elias, Mercury methylation by novel microorganisms from new environments. Environ. Sci. Technol. 2013, 47, 11810.
Mercury methylation by novel microorganisms from new environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVahsrfM&md5=37614adc4f6eb29842a4e6f1ec1d6ad6CAS |

[16]  L. Huguet, S. Castelle, J. Schafer, G. Blanc, R. Maury-Brachet, C. Reynouard, F. Jorand, Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana. Sci. Total Environ. 2010, 408, 1338.
Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtValu7o%3D&md5=a6382b304151214bf111cd34034db5d8CAS |

[17]  C. I. Molina, F. M. Gibon, J. L. Duprey, E. Dominguez, J. R. D. Guimaraes, M. Roulet, Transfer of mercury and methylmercury along macroinvertebrate food chains in a floodplain lake of the Beni River, Bolivian Amazonia. Sci. Total Environ. 2010, 408, 3382.
Transfer of mercury and methylmercury along macroinvertebrate food chains in a floodplain lake of the Beni River, Bolivian Amazonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlOit7c%3D&md5=ac1d430ac6e98c2f0d9a910a8e68b9aaCAS |

[18]  S. Hamelin, D. Planas, M. Amyot, Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada). Sci. Total Environ. 2015, 512–513, 464.
Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada).Crossref | GoogleScholarGoogle Scholar |

[19]  J. P. Cheng, W. C. Zhao, Y. Y. Liu, C. Wu, C. Liu, W. H. Wang, Adsorption properties and gaseous mercury transformation rate of natural biofilm. Bull. Environ. Contam. Toxicol. 2008, 81, 516.
Adsorption properties and gaseous mercury transformation rate of natural biofilm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFert7bK&md5=4f7091e7af00de54d8ffef422d10b9a4CAS |

[20]  P. Stoodley, K. Sauer, D. G. Davies, J. W. Costerton, Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 2002, 56, 187.
Biofilms as complex differentiated communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1Gis7o%3D&md5=c04702e128fecfebbaa6da013eafb327CAS |

[21]  T. R. Neu, J. R. Lawrence, Extracellular polymeric substances in microbial biofilms, in Microbial glycobiology: Structures, Relevance and Applications (Eds. A.P. Moran, O. Holst, P. J. Brennan, M. von Itzstein) 2009, pp. 735–758 (Elsevier: London).

[22]  M. Vert, Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377.
Terminology for biorelated polymers and applications (IUPAC Recommendations 2012).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1aqurk%3D&md5=647a11c6ef83523c3963196b158f4797CAS |

[23]  T. J. Stewart, J. Traber, A. Kroll, R. Behra, L. Sigg, Characterization of extracellular polymeric substances (EPS) from periphyton using liquid chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). Environ. Sci. Pollut. Res. Int. 2013, 20, 3214.
Characterization of extracellular polymeric substances (EPS) from periphyton using liquid chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVajsLY%3D&md5=2e908f9c2529ee7d2bec52f60750a512CAS |

[24]  R. De Philippis, M. Vincenzini, Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol. Rev. 1998, 22, 151.
Exocellular polysaccharides from cyanobacteria and their possible applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms1SqsLg%3D&md5=7413d200af3786ef7cb31cf1c928f41bCAS |

[25]  A. Kroll, R. Behra, R. Kaegi, L. Sigg, Extracellular polymeric substances (EPS) of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles. PLoS One 2014, 9, e110709.
Extracellular polymeric substances (EPS) of freshwater biofilms stabilize and modify CeO2 and Ag nanoparticles.Crossref | GoogleScholarGoogle Scholar |

[26]  H. R. Dash, S. Das, Interaction between mercuric chloride and extracellular polymers of biofilm-forming mercury resistant marine bacterium Bacillus thuringiensis PW-05. RSC Advances 2016, 6, 109793.
Interaction between mercuric chloride and extracellular polymers of biofilm-forming mercury resistant marine bacterium Bacillus thuringiensis PW-05.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVCisbnE&md5=804f04205e23089c6277340ac25a5bfbCAS |

[27]  M. Leclerc, D. Planas, M. Amyot, Relationship between extracellular low-molecular-weight thiols and mercury species in natural lake periphytic biofilms. Environ. Sci. Technol. 2015, 49, 7709.
Relationship between extracellular low-molecular-weight thiols and mercury species in natural lake periphytic biofilms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovF2qsL4%3D&md5=22c043deef391bf6910040b6c7b8e903CAS |

[28]  P. Dranguet, S. Le Faucheur, C. Cosio, V. I. Slaveykova, Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms. Environ. Sci. Process. Impacts 2017, 19, 38.
Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXntl2rsA%3D%3D&md5=caa3fbbdf607432cfdda5820c2ff6f96CAS |

[29]  S. Meylan, R. Behra, L. Sigg, Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: a microcosm study. Environ. Sci. Technol. 2004, 38, 3104.
Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: a microcosm study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1ensLg%3D&md5=4431d3b034e184510800eacfd3b38713CAS |

[30]  P. Bradac, B. Wagner, D. Kistler, J. Traber, R. Behra, L. Sigg, Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations. Environ. Pollut. 2010, 158, 641.
Cadmium speciation and accumulation in periphyton in a small stream with dynamic concentration variations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1Onsg%3D%3D&md5=be285769e8cbbea4d347e73c3e74fdaaCAS |

[31]  M. Nordberg, J. H. Duffus, D. M. Templeton, Explanatory dictionary of key terms in toxicology: Part II (IUPAC Recommendations 2010). Pure Appl. Chem. 2010, 82, 679.
Explanatory dictionary of key terms in toxicology: Part II (IUPAC Recommendations 2010).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1eks78%3D&md5=50dd4d3d0842a18579fc10985299649fCAS |

[32]  I. Lavoie, M. Lavoie, C. Fortin, A mine of information: benthic algal communities as biomonitors of metal contamination from abandoned tailings. Sci. Total Environ. 2012, 425, 231.
A mine of information: benthic algal communities as biomonitors of metal contamination from abandoned tailings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFejtL4%3D&md5=80fe0a957fcb491aea633ef37e2803eaCAS |

[33]  S. Leguay, I. Lavoie, J. L. Levy, C. Fortin, Using biofilms for monitoring metal contamination in lotic ecosystems: The protective effects of hardness and pH on metal bioaccumulation. Environ. Toxicol. Chem. 2016, 35, 1489.
Using biofilms for monitoring metal contamination in lotic ecosystems: The protective effects of hardness and pH on metal bioaccumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XltlyisrY%3D&md5=7c6237482a5b01f4044035c5a294a564CAS |

[34]  P. Bradac, E. Navarro, N. Odzak, R. Behra, L. Sigg, Kinetics of cadmium accumulation in periphyton under freshwater conditions. Environ. Toxicol. Chem. 2009, 28, 2108.
Kinetics of cadmium accumulation in periphyton under freshwater conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Srur%2FF&md5=3e196770994fcaee58419bfa1dbe6adcCAS |

[35]  S. Meylan, R. Behra, L. Sigg, Accumulation of copper and zinc in periphyton in response to dynamic variations of metal speciation in freshwater. Environ. Sci. Technol. 2003, 37, 5204.
Accumulation of copper and zinc in periphyton in response to dynamic variations of metal speciation in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Oisbk%3D&md5=103769fcd1b34ed13009721aaf07303dCAS |

[36]  R. J. Ritchie, Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006, 89, 27.
Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFChsLs%3D&md5=9ba7db93194a75b89ef2216e8ca7e0caCAS |

[37]  W.S. Rasband. ImageJ 2016 (US National Institutes of Health: Bethesda, MA). Available at https://imagej.nih.gov/ij/ [verified 20 November 2017].

[38]  P. Dranguet, C. Cosio, S. Le Faucheur, D. Hug-Peter, J. L. Loizeau, V. Ungureanu, V. I. Slaveykova, Biofilm composition in the Olt River (Romania) reservoirs impacted by chlor-alkali production plant. Environ. Sci. Process. Impacts 2017, 19, 687.
Biofilm composition in the Olt River (Romania) reservoirs impacted by chlor-alkali production plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXktlykur0%3D&md5=caf75a6b8f69c20a7aa92eb8a3de3268CAS |

[39]  USEPA, Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry, EPA-821-R-02-019 2002 (US Environmental Protection Agency, Office of Water: Washington DC).

[40]  E. Tipping, Modelling the interactions of Hg(II) and methylmercury with humic substances using WHAM/Model VI. Appl. Geochem. 2007, 22, 1624.
Modelling the interactions of Hg(II) and methylmercury with humic substances using WHAM/Model VI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1yls7w%3D&md5=8e6208c63459c1f2460f3dc326c6b64cCAS |

[41]  K. J. Powell, P. L. Brown, R. H. Byrne, T. Gadja, G. Hefter, S. Sjöberg, H. Wanner, Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+–Cl−, OH−, CO32−, SO42−, and PO43− aqueous systems (IUPAC report). Pure Appl. Chem. 2005, 77, 739.
Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+–Cl, OH, CO32−, SO42−, and PO43− aqueous systems (IUPAC report).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Krs70%3D&md5=876013662aefbe4afe2b0f8a99a61140CAS |

[42]  M. C. Newman, W. H. Clements, Models of bioaccumulation and bioavailability, in Ecotoxicology: A Comprehensive Treatment (Eds M.C. Newman, W.H. Clements) 2007, pp. 115–133 (CRC Press: Boca Raton, FL).

[43]  RCore-Team R: A language and environment for statistical computing 2015 (R Foundation for Statistical Computing, Vienna). Available at https://www.r-project.org/ [verified 20 November 2017].

[44]  P. G. C. Campbell, O. Errecalde, C. Fortin, V. P. Hiriart-Baer, B. Vigneault, Metal bioavailability to phytoplankton - applicability of the biotic ligand model. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2002, 133, 189.
Metal bioavailability to phytoplankton - applicability of the biotic ligand model.Crossref | GoogleScholarGoogle Scholar |

[45]  P. Dranguet, R. Fluck, N. Regier, C. Cosio, S. Le Faucheur, V. I. Slaveykova, Towards mechanistic understanding of mercury availability and toxicity to aquatic primary producers. Chimia (Aarau) 2014, 68, 799.
Towards mechanistic understanding of mercury availability and toxicity to aquatic primary producers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitFajtw%3D%3D&md5=9dd529f02b682d23539adf31de67045bCAS |

[46]  S. Le Faucheur, P. G. C. Campbell, C. Fortin, V. I. Slaveykova, Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling. Environ. Toxicol. Chem. 2014, 33, 1211.
Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVKmu78%3D&md5=76ed4ba6ad44cf97d313ebc542365397CAS |

[47]  J. Buffle, K. J. Wilkinson, H. P. Van Leeuwen, Chemodynamics and bioavailability in natural waters. Environ. Sci. Technol. 2009, 43, 7170.
Chemodynamics and bioavailability in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGgu7vE&md5=44cd79bcb3d27a7ef65e9d22e3d3fd2dCAS |

[48]  H. C. Flemming, J. Wingender, The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623.
| 1:CAS:528:DC%2BC3cXpsFWlur4%3D&md5=827413d93ec1a409b6fb840f204e9d17CAS |

[49]  E. D. Stein, Y. Cohen, A. M. Winer, Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 1996, 26, 1.
Environmental distribution and transformation of mercury compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsV2nsLk%3D&md5=c991a1953428439cfcf63236ca1d22ffCAS |

[50]  C.-C. Lin, N. Yee, T. Barkay, Microbial transformations in the mercury cycle, in Environmental Chemistry and Toxicology of Mercury (Eds G. Liu, Y. Cai, N. O’Driscoll) 2011, pp. 155–191 (Wiley: Hoboken, NJ).

[51]  M. Ravichandran, Interactions between mercury and dissolved organic matter - a review. Chemosphere 2004, 55, 319.
Interactions between mercury and dissolved organic matter - a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFWgtbg%3D&md5=32eea22c6c4772922c77a86033a546a2CAS |

[52]  T. Jiang, S.-Q. Wei, D. C. Flanagan, M.-J. Li, X.-M. Li, Q. Wang, C. Luo, Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems. Pedosphere 2014, 24, 125.
Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFCjtLfN&md5=afbd7ea215ab05935ba6fc4e4b5c7231CAS |

[53]  H. Hsu-Kim, D. L. Sedlak, Similarities between inorganic sulfide and the strong Hg(II)-complexing ligands in municipal wastewater effluent. Environ. Sci. Technol. 2005, 39, 4035.
Similarities between inorganic sulfide and the strong Hg(II)-complexing ligands in municipal wastewater effluent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFCmt7w%3D&md5=b2263b765069c82ee615e324ef143486CAS |

[54]  C. A. Kelly, J. W. Rudd, M. H. Holoka, Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Environ. Sci. Technol. 2003, 37, 2941.
Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVKru78%3D&md5=12bbabbc90df5fa8582587539c54a267CAS |

[55]  G. R. Golding, R. Sparling, C. A. Kelly, Effect of pH on intracellular accumulation of trace concentrations of Hg(II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Appl. Environ. Microbiol. 2008, 74, 667.
Effect of pH on intracellular accumulation of trace concentrations of Hg(II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVSqurY%3D&md5=6fc3c7195f7ac9ff39b79f6fb912124dCAS |

[56]  S. Le Faucheur, Y. Tremblay, C. Fortin, P. G. C. Campbell, Acidification increases mercury uptake by a freshwater alga, Chlamydomonas reinhardtii. Environ. Chem. 2011, 8, 612.
Acidification increases mercury uptake by a freshwater alga, Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCitLnI&md5=8dcbff3316caef02e548350b897310edCAS |

[57]  J. K. Schaefer, S. S. Rocks, W. Zheng, L. Liang, B. Gu, F. M. Morel, Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc. Natl. Acad. Sci. USA 2011, 108, 8714.
Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVGqurk%3D&md5=191febcb0770dd3a9e19770d002d0841CAS |

[58]  P. S. Stewart, Diffusion in biofilms. J. Bacteriol. 2003, 185, 1485.
Diffusion in biofilms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1Sisrs%3D&md5=70c3134b6355680392d76657f8782ee8CAS |

[59]  T. J. Battin, L. A. Kaplan, J. Denis Newbold, C. M. Hansen, Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 2003, 426, 439.
Contributions of microbial biofilms to ecosystem processes in stream mesocosms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1GlsLk%3D&md5=667ca70e286c7050837dc954c661d9f2CAS |

[60]  Z. Hu, J. Jin, H. D. Abruna, P. L. Houston, A. G. Hay, W. C. Ghiorse, M. L. Shuler, G. Hidalgo, L. W. Lion, Spatial distributions of copper in microbial biofilms by scanning electrochemical microscopy. Environ. Sci. Technol. 2007, 41, 936.
Spatial distributions of copper in microbial biofilms by scanning electrochemical microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlaksrfP&md5=908ced360104d1070d8ab47264095b4dCAS |

[61]  C. M. Santegoeds, T. G. Ferdelman, G. Muyzer, K. de Beer, Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl. Environ. Microbiol. 1998, 64, 3731.
| 1:CAS:528:DyaK1cXms1ent74%3D&md5=1685f66fd9a2178f8cdc69a7637db91aCAS |

[62]  S. Okabe, T. Itoh, H. Satoh, Y. Watanabe, Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol. 1998, 65, 5107.

[63]  J. K. Schaefer, F. M. M. Morel, High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat. Geosci. 2009, 2, 123.
High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1amt7k%3D&md5=50a2fa6dc6db1d9fca04330a46db8115CAS |

[64]  U. Ndu, R. P. Mason, H. Zhang, S. J. Lin, P. T. Visscher, Effect of inorganic and organic ligands on the bioavailability of methylmercury as determined by using a mer-lux bioreporter. Appl. Environ. Microbiol. 2012, 78, 7276.
Effect of inorganic and organic ligands on the bioavailability of methylmercury as determined by using a mer-lux bioreporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOnu7%2FK&md5=aab97acf09a2eba74d95c01c5bd4ad46CAS |

[65]  S. U. Gerbersdorf, S. Wieprecht, Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. Geobiology 2015, 13, 68.
Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFehtr0%3D&md5=4381e0bd2a581d32f127d89ff322f712CAS |

[66]  W. R. Hill, I. L. Larsen, Growth dilution of metals in microalgal biofilms. Environ. Sci. Technol. 2005, 39, 1513.
Growth dilution of metals in microalgal biofilms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosFGjsw%3D%3D&md5=59262d0b1a08fe55697b688381b971ecCAS |

[67]  Y. Wu, W. X. Wang, Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure. J. Hazard. Mater. 2012, 217, 271.
Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure.Crossref | GoogleScholarGoogle Scholar |

[68]  W. G. Sunda, S. A. Huntsman, Interactions among Cu2+, Zn2+, and Mn2+ in controlling cellular Mn, Zn, and growth rate in the coastal alga Chlamydomonas. Limnol. Oceanogr. 1998, 43, 1055.
Interactions among Cu2+, Zn2+, and Mn2+ in controlling cellular Mn, Zn, and growth rate in the coastal alga Chlamydomonas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlOnur8%3D&md5=016cd2b8f24645e92b56fc1b6543ef01CAS |

[69]  A. M. Osborn, K. D. Bruce, P. Strike, D. A. Ritchie, Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol. Rev. 1997, 19, 239.
Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivV2murg%3D&md5=88781228ae7c56afc41b4c454227ae88CAS |

[70]  E. Morelli, R. Ferrara, B. Bellini, F. Dini, G. Di Giuseppe, L. Fantozzi, Changes in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure. Sci. Total Environ. 2009, 408, 286.
Changes in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWqsbvN&md5=d5747d7015e7cacbc4680519c7c90884CAS |

[71]  M. Kovac Virsek, B. Hubad, A. Lapanje, Mercury induced community tolerance in microbial biofilms is related to pollution gradients in a long-term polluted river. Aquat. Toxicol. 2013, 144, 208.

[72]  J. M. Parks, A. Johs, M. Podar, R. Bridou, R. A. Hurt, S. D. Smith, S. J. Tomanicek, Y. Qian, S. D. Brown, C. C. Brandt, A. V. Palumbo, J. C. Smith, J. D. Wall, D. A. Elias, L. Y. Liang, The genetic basis for bacterial mercury methylation. Science 2013, 339, 1332.
The genetic basis for bacterial mercury methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVaqtL8%3D&md5=31ab9a331a73a6ab2452d0ae62f0f767CAS |