Quantification of nitroaromatic compounds in atmospheric fine particulate matter in Hong Kong over 3 years: field measurement evidence for secondary formation derived from biomass burning emissions
Ka Shing Chow A , X. H. Hilda Huang B D and Jian Zhen Yu A B C DA Environmental Science Programs, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, P.R. China.
B Institute for the Environment, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, P.R. China.
C Department of Chemistry, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, P.R. China.
D Corresponding authors. Email: hildahuang@ust.hk; jian.yu@ust.hk
Environmental Chemistry 13(4) 665-673 https://doi.org/10.1071/EN15174
Submitted: 13 August 2015 Accepted: 18 September 2015 Published: 21 December 2015
Environmental context. Nitroaromatic compounds constitute an important portion of brown carbon and thereby contribute to the light-absorbing properties of atmospheric aerosols. We report their abundance in Hong Kong over 3 years and show that they were mainly associated with aged biomass burning particles. Knowledge of the abundance and sources of nitroaromatic compounds could assist in evaluating their contribution to brown carbon and in apportioning secondary organic aerosols from biomass burning sources.
Abstract. Biomass burning is a major source of atmospheric aerosols on both global and regional scales. Among the large number of unidentified organic compounds related to biomass burning, nitroaromatic compounds (NACs) have drawn attention because of their UV light-absorbing ability. In this study, an analytical method based on liquid chromatography–mass spectrometry was used to quantify a group of NACs (nitrophenol, methylnitrophenols, dimethylnitrophenol, nitrocatechol and methylnitrocatechols) in aerosol samples. The nitrocatechol–metal complex interference, sample matrix effects, sample stability, precision and reproducibility were investigated. The method detection limits ranged from 0.10 to 0.23 ng mL–1 and the recoveries for the target NACs were in the range of 96–102 %. The method was applied to a total of 184 ambient PM2.5 samples (particulate matter of 2.5 µm or less in aerodynamic diameter) collected at an urban site in Hong Kong over 3 years (2010–2012). The NACs quantified showed a distinct seasonal variation with higher concentrations in autumn and winter (3.6–21.0 ng m–3), coinciding with more biomass burning activities coming from the regions west and north-east to Hong Kong, and lower levels during spring and summer (0.3–3.8 ng m–3). The good correlations between NACs and levoglucosan (R = 0.82), a known biomass burning tracer compound, support the common origin from biomass burning. Moderate to good correlations between NACs and nitrate suggest that they might be products of secondary formation processes involving the same precursor gases (e.g. NOx). Additional lines of circumstantial evidence were also found and presented in the paper to support secondary formation derived from biomass burning as the main contributing source of NACs.
References
[1] A. Andreae, A. Gelencser, Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006, 6, 3131.| Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Sns74%3D&md5=d4a06ff7885ff68d12e63a850fadcec8CAS |
[2] R. J. Park, M. J. Kim, J. I. Jeong, D. Yooun, S. Kim, A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia. Atmos. Environ. 2010, 44, 1414.
| A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFKmsL8%3D&md5=cd6e2ca5573817f22bba05f61ad689b9CAS |
[3] M. Z. Jacobson, Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption. J. Geophys. Res. 1999, 104, 3527.
| Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFWjs7g%3D&md5=da2b48099c75ce905bf2f9769ef36b57CAS |
[4] M. M. Galloway, P. S. Chhabra, A. W. H. Chan, J. D. Surratt, R. C. Flagan, J. H. Seinfeld, F. N. Keutsch, Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions. Atmos. Chem. Phys. 2009, 9, 3331.
| Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1amsb4%3D&md5=78c41ae491be60d3ec262332cb7bbedbCAS |
[5] E. L. Shapiro, J. Szprengiel, N. Sareen, C. N. Jen, M. R. Giordano, V. F. McNeill, Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimcs. Atmos. Chem. Phys. 2009, 9, 2289.
| Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimcs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGjtL0%3D&md5=0189e81a48149c2433b958fd9877a57cCAS |
[6] S. A. Mang, D. K. Henricksen, A. P. Bateman, M. P. S. Andersen, D. R. Blake, S. A. Nizkorodov, Contribution of carbonyl photochemistry to aging of atmospheric secondary organic aerosol. J. Phys. Chem. A 2008, 112, 8337.
| Contribution of carbonyl photochemistry to aging of atmospheric secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslOhurs%3D&md5=b963a9b51be6909e5dc1fa1115bf944cCAS | 18700731PubMed |
[7] D. L. Bones, D. K. Henricksen, S. A. Mang, M. Gonsior, A. P. Bateman, T. B. Nguyen, W. J. Cooper, S. A. Nizkorodov, Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales. J. Geophys. Res. Atmos. 2010, 115, D05203.
| Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales.Crossref | GoogleScholarGoogle Scholar |
[8] H. Sun, L. Biedermann, T. C. Bond, The color of brown carbon: a model for ultraviolet and visible light absorption by organic carbon aerosol. Geophys. Res. Lett. 2007, 34, L17813.
| The color of brown carbon: a model for ultraviolet and visible light absorption by organic carbon aerosol.Crossref | GoogleScholarGoogle Scholar |
[9] Y. J. Li, D. D. Huang, H. Y. Cheung, A. K. Y. Lee, C. K. Chan, Aqueous-phase photochemical oxidation and direct photolysis of vanillin – a model compound of methoxy phenols from biomass burning. Atmos. Chem. Phys. 2014, 14, 2871.
| Aqueous-phase photochemical oxidation and direct photolysis of vanillin – a model compound of methoxy phenols from biomass burning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1KqtrY%3D&md5=36ab05b53c01d400b80c22a8608ae851CAS |
[10] B. Nozière, W. Esteve, Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols. Geophys. Res. Lett. 2005, 32, L03812.
| Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols.Crossref | GoogleScholarGoogle Scholar |
[11] Y. Desyaterik, Y. Sun, X. Shen, T. Lee, X. Wang, T. Wang, J. L. Collett, Speciation of ‘brown’ carbon in cloud water impacted by agricultural biomass burning in eastern China. J. Geophys. Res. Atmos. 2013, 118, 7389.
| Speciation of ‘brown’ carbon in cloud water impacted by agricultural biomass burning in eastern China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFGmsrfO&md5=e334ab999a170b9c9b25ebedc24f0337CAS |
[12] X. Zhang, Y.-H. Lin, J. D. Surratt, P. Zotter, A. S. H. Prévôt, R. J. Weber, Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: a contrast in secondary organic aerosol. Geophys. Res. Lett. 2011, 38, L21810.
| Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: a contrast in secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |
[13] X. Zhang, Y.-H. Lin, J. D. Surratt, R. J. Weber, Sources, composition and absorption Ångström exponent of light-absorbing organic components in aerosol extracts from the Los Angeles Basin. Environ. Sci. Technol. 2013, 47, 3685.
| Sources, composition and absorption Ångström exponent of light-absorbing organic components in aerosol extracts from the Los Angeles Basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFemsLc%3D&md5=68b30e206bcab383133e20d214e0f975CAS | 23506531PubMed |
[14] Q. Huang, L. Wang, S. Han, The genotoxicity of substituted nitrobenzenes and the quantitative structure-activity relationship studies. Chemosphere 1995, 30, 915.
| The genotoxicity of substituted nitrobenzenes and the quantitative structure-activity relationship studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkt1Wrs70%3D&md5=3530a0e38c2870890d6ab5470ddeb416CAS | 7712138PubMed |
[15] K. Nojima, A. Kawaguchi, T. Ohya, S. Kanno, M. Hirobe, Studies on photochemical reaction of air pollutants. 10. Identification of nitrophenols in suspended particulates. Chem. Pharm. Bull. 1983, 31, 1047.
| Studies on photochemical reaction of air pollutants. 10. Identification of nitrophenols in suspended particulates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksFyis74%3D&md5=f5477477ea16dcb4993df2f06070ed72CAS |
[16] J. Tremp, P. Mattrel, S. Fingler, W. Giger, Phenol and nitrophenols as tropospheric pollutants: emissions from automobile exhausts and phase transfer in the atmosphere. Water Air Soil Pollut. 1993, 68, 113.
| Phenol and nitrophenols as tropospheric pollutants: emissions from automobile exhausts and phase transfer in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtlaktL4%3D&md5=70ba8db58fd865e355b505bee9957392CAS |
[17] J. Lüttke, V. Scheer, K. Levsen, G. Wünsch, J. N. Cape, K. J. Hargreaves, R. L. Storeton-West, K. Acker, W. Wieprecht, B. Jones, Occurrence and formation of nitrated phenols in and out of cloud. Atmos. Environ. 1997, 31, 2637.
| Occurrence and formation of nitrated phenols in and out of cloud.Crossref | GoogleScholarGoogle Scholar |
[18] P. H. Howard, Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Vol. 1, 1989 (Lewis Publishers: Chelsea, MA).
[19] D. Grosjean, Reactions of o-cresol and nitrocresol with NOx in sunlight and with ozone-nitrogen dioxide mixtures in the dark. Environ. Sci. Technol. 1985, 19, 968.
| Reactions of o-cresol and nitrocresol with NOx in sunlight and with ozone-nitrogen dioxide mixtures in the dark.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltV2htLw%3D&md5=b1e18f34998be8be10e52af424b1024fCAS |
[20] E. Bolzacchini, M. Bruschi, J. Hjorth, S. Meinardi, M. Orlandi, B. Rindone, E. Rosenbohm, Gas-phase reaction of phenol with NO3. Environ. Sci. Technol. 2001, 35, 1791.
| Gas-phase reaction of phenol with NO3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlCmsbY%3D&md5=1c508464893a7699b44de58e2d0cbda1CAS | 11355194PubMed |
[21] T. B. Nguyen, J. Laskin, A. Laskin, S. A. Nizkorodov, Nitrogen-containing organic compounds and oligomers in secondary organic aerosol formed by photooxidation of isoprene. Environ. Sci. Technol. 2011, 45, 6908.
| Nitrogen-containing organic compounds and oligomers in secondary organic aerosol formed by photooxidation of isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1Cjsr8%3D&md5=eca95595f056ce92b580aa143decea0eCAS | 21732631PubMed |
[22] E. Borrás, L. A. Tortajada-Genaro, Secondary organic aerosol formation from the photo-oxidation of benzene. Atmos. Environ. 2012, 47, 154.
| Secondary organic aerosol formation from the photo-oxidation of benzene.Crossref | GoogleScholarGoogle Scholar |
[23] K. Sato, A. Takami, Y. Kato, T. Seta, Y. Fujitani, T. Hikida, A. Shimono, T. Imamura, AMS and LC/MS analyses of SOA from the photooxidation of benzene and 1,3,5-trimethylbenzene in the presence of NOx: effects of chemical structure on SOA aging. Atmos. Chem. Phys. 2012, 12, 4667.
| AMS and LC/MS analyses of SOA from the photooxidation of benzene and 1,3,5-trimethylbenzene in the presence of NOx: effects of chemical structure on SOA aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGkt77M&md5=dca388af2854eb4424d5980455187ebfCAS |
[24] D. E. Romonosky, A. Laskin, J. Laskin, S. A. Nizkorodov, High-resolution mass spectrometry and molecular characterization of aqueous photochemistry products of common types of secondary organic aerosols. J. Phys. Chem. A 2015, 119, 2594.
| High-resolution mass spectrometry and molecular characterization of aqueous photochemistry products of common types of secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFKqurjM&md5=0ee84bee459de51d63b8057e40071d6eCAS | 25412112PubMed |
[25] A. Kroflič, M. Grilc, I. Grgić, Does toxicity of aromatic pollutants increase under remote atmospheric conditions? Sci. Rep. 2015, 5, 8859.
| Does toxicity of aromatic pollutants increase under remote atmospheric conditions?Crossref | GoogleScholarGoogle Scholar | 25748923PubMed |
[26] P. Lin, J. Liu, J. E. Shilling, S. M. Kathmann, J. Laskin, A. Laskin, Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Phys. Chem. Chem. Phys. 2015, 17, 23 312.
| Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVynt7jK&md5=c1dc81ba42c8daa2354034d91dde059aCAS |
[27] A. Cecinato, V. Di Palo, D. Pomata, M. C. T. Sciano, M. Possanzini, Measurement of phase-distributed nitrophenols in Rome ambient air. Chemosphere 2005, 59, 679.
| Measurement of phase-distributed nitrophenols in Rome ambient air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFGluro%3D&md5=90fb58dd794a9acd8f5bf1c543bd2a08CAS | 15792665PubMed |
[28] Y. Iinuma, O. Böge, R. Gräfe, H. Herrmann, Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols. Environ. Sci. Technol. 2010, 44, 8453.
| Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlansLvE&md5=5d20617b499c7e358a1fa106cf9848b0CAS | 20964362PubMed |
[29] M. Claeys, R. Vermeylen, F. Yasmeen, Y. Gómez-González, X. Chi, W. Maenhaut, T. Mészáros, I. Salma, Chemical characterization of humic-like substances from urban, rural and tropical biomass burning environments using liquid chromatography with UV/Vis photodiode array detection and electrospray ionisation mass spectrometry. Environ. Chem. 2012, 9, 273.
| Chemical characterization of humic-like substances from urban, rural and tropical biomass burning environments using liquid chromatography with UV/Vis photodiode array detection and electrospray ionisation mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVOisrk%3D&md5=cf436e5d9d36fdc299e56950b3f70c50CAS |
[30] A. Kahnt, S. Behrouzi, R. Vermeylen, M. S. Shalamzari, J. Vercauteren, E. Roekens, M. Claeys, M. Maenhaut, One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium. Atmos. Environ. 2013, 81, 561.
| One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKmsbjO&md5=c23c223a7e6c46b2143e58c187a584efCAS |
[31] C. Mohr, F. D. Lopez-Hilfiker, P. Zotter, A. S. H. Prévôt, L. Xu, N. L. Ng, S. C. Herndon, L. R. Williams, J. P. Franklin, M. S. Zahniser, D. R. Worsnop, W. B. Knighton, A. C. Aiken, K. J. Gorkowski, M. K. Dubey, J. D. Allan, J. A. Thornton, Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during winter time. Environ. Sci. Technol. 2013, 47, 6316.
| Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during winter time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Gltrk%3D&md5=9d90399e2c5e7f03f3c5f941021d26b6CAS | 23710733PubMed |
[32] Y. Y. Zhang, L. Müller, R. Winterhalter, G. K. Moortgat, T. Hoffmann, U. Pöschl, Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter. Atmos. Chem. Phys. 2010, 10, 7859.
| Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWls7nN&md5=1fb4c514c69f79b44de20e48eb3c2d6fCAS |
[33] M. Claeys, I. Kourtchev, V. Pashynska, G. Vas, R. Vermeylen, W. Wang, J. Cafmeyer, X. Chi, P. Artaxo, M. O. Andreae, W. Maenhaut, Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diurnal variations and size distributions. Atmos. Chem. Phys. 2010, 10, 9319.
| Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diurnal variations and size distributions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ait7vK&md5=c8914c0cb1c1f77ef83729bb9958c7beCAS |
[34] Z. Kitanovski, I. Grgić, R. Vermeylen, M. Claeys, W. Maenhaut, Liquid chromatography tandem mass spectrometry method for characterization of monoaromatic nitro-compounds in atmospheric particulate matter. J. Chromatogr. A 2012, 1268, 35.
| Liquid chromatography tandem mass spectrometry method for characterization of monoaromatic nitro-compounds in atmospheric particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2nu7%2FL&md5=b59c3af2c2c1ab99e4ea1365cfa57e53CAS | 23122275PubMed |
[35] X. H. H. Huang, Q. J. Bian, W. M. Ng, P. K. K. Louie, J. Z. Yu, Characterization of PM2.5 major components and source investigation in suburban Hong Kong: a one year monitoring study. Aerosol Air Qual. Res. 2014, 14, 237.
| 1:CAS:528:DC%2BC2cXotVKrtL4%3D&md5=5358cf7b96d84e605cb4d261345e47a2CAS |
[36] B. Y. Kuang, P. Lin, X. H. H. Huang, J. Z. Yu, Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM2.5 major components and source markers. Atmos. Chem. Phys. 2015, 15, 1995.
| Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM2.5 major components and source markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1SgsLk%3D&md5=4b3957853faf3cb1b528f7656fe378b2CAS |
[37] P. K. K. Louie, G. S. P. Leung, B. T. W. Yeung, D. W. M. Sin, J. Z. Yu, A. K. H. Lau, M. Bergin, M. Zheng, J. Chow, J. Watson, Twelve-Month Particulate Matter Study In Hong Kong. Final Report Submitted To The Hong Kong Environmental Protection Department 2002. Available at http://www.epd.gov.hk/epd/sites/default/files/epd/english/environmentinhk/air/studyrpts/files/content.pdf [Verified 1 November 2015].
[38] M. A. J. Harrison, S. Barra, D. Borghesi, D. Vione, C. Arsene, R. I. Olariu, Nitrated phenols in the atmosphere: a review. Atmos. Environ. 2005, 39, 231.
| Nitrated phenols in the atmosphere: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKgurvJ&md5=6e4889736e78785001b97f0eea089683CAS |
[39] P. J. Ziemann, R. Atkinson, Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev. 2012, 41, 6582.
| Kinetics, products, and mechanisms of secondary organic aerosol formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaktr%2FM&md5=198bc0b59493615a07d40c3ec0a38ef0CAS | 22940672PubMed |
[40] G. S. Wojcik, J. S. Chang, A re-evaluation of sulfur budgets, lifetimes, and scavenging ratios for eastern North America. J. Atmos. Chem. 1997, 26, 109.
| A re-evaluation of sulfur budgets, lifetimes, and scavenging ratios for eastern North America.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvVKnt7w%3D&md5=9145c7bca47445f27ae25c9ce25f80d2CAS |
[41] J. J. Schauer, B. T. Mader, J. T. DeMinter, G. Heidemann, M. S. Bae, J. H. Seinfeld, R. C. Flagan, R. A. Cary, D. Smith, B. J. Huebert, T. Bertram, S. Howell, J. T. Kline, P. Quinn, T. Bates, B. Turpin, H. J. Lim, J. Z. Yu, H. Yang, M. D. Keywood, ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon. Environ. Sci. Technol. 2003, 37, 993.
| ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlOitQ%3D%3D&md5=f161e9bd474ff18760c5dbf663f5b219CAS | 12666931PubMed |