Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Chromate adsorption from chromite ore processing residue eluates by three Indian soils

K. Matern A and T. Mansfeldt A B
+ Author Affiliations
- Author Affiliations

A Soil Geography/Soil Science, Department of Geosciences, University of Cologne, Albertus-Magnus-Platz, D-50923 Cologne, Germany.

B Corresponding author. Email: tim.mansfeldt@uni-koeln.de

Environmental Chemistry 13(4) 674-681 https://doi.org/10.1071/EN15147
Submitted: 10 July 2015  Accepted: 24 October 2015   Published: 4 January 2016

Environmental context. Chromate (CrO42–)-containing waste is illegally dumped in some places in the state of Uttar Pradesh, north India, although CrO42– is known to be toxic and carcinogenic. Because CrO42– is leached from the landfills, this study investigated the adsorption of CrO42– by soils. The results indicated that CrO42– is highly leachable and adsorption is inhibited, which leads to contamination of the groundwater and drinking water in this area.

Abstract. Chromite ore processing residue (COPR) is a harmful waste of the chromate (CrO42–) extraction roasting process. Nevertheless, deposition of COPR in uncontrolled surface landfills is still common practice in some countries. Leaching of carcinogenic CrO42– and contamination of groundwater is a key environmental risk arising from COPR sites. The objective of this study was to evaluate the adsorption behaviour of CrO42– from COPR eluates by soils. Prior to the adsorption experiments, batch studies at varying solid-to-liquid ratios were performed to evaluate the solubility of CrO42– from COPR. Chromate adsorption experiments were carried out in a batch system with eluates obtained from two different Indian COPRs to assess potential groundwater contamination by CrO42–. Three soils that originate from the surroundings of COPR dumping sites were chosen in order to provide realistic adsorption conditions. The data were evaluated with the Freundlich and Langmuir equation. Chromate adsorption was inhibited because of the high pH of both of the soils (pH 6.7 to 7.2) and the eluates (pH 12.3) as well as the high carbonate concentration of the eluates. The extent and behaviour of CrO42– adsorption from both eluates was similar. The main difference between the eluates was the solubility of CrO42– from COPR and thus the initial CrO42– concentration. The results presented in this study provide an improved understanding of the mobility of CrO42– in the affected area, which is important because the local population uses the groundwater not only for the needs of livestock but also as drinking water.


References

[1]  D. E. Kimbrough, Y. Cohen, A. M. Winer, L. Creelman, C. Mabuni, A critical assessment of chromium in the environment. Crit. Rev. Environ. Sci. Technol. 1999, 29, 1.
A critical assessment of chromium in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlWqtbo%3D&md5=7901a987ef3c8fc7ca3d8f79ac45b5faCAS |

[2]  A. Pechova, L. Pavlata, Chromium as an essential nutrient: a review. Vet. Med. 2007, 52, 1.
| 1:CAS:528:DC%2BD2sXjsVKrtbk%3D&md5=e51b552863e2c5cb33cd2a61c9a9a1a7CAS |

[3]  T. Burke, J. Fagliano, M. Goldoft, R. E. Hazen, R. Iglewicz, T. Mckee, Chromite ore processing residue in Hudson County, New Jersey. Environ. Health Perspect. 1991, 92, 131.
Chromite ore processing residue in Hudson County, New Jersey.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FjslCmug%3D%3D&md5=fb8711aeab875df61a410adc45696d5bCAS | 1935843PubMed |

[4]  R. M. Sedman, J. Beaumont, T. A. Mcdonald, S. Reynolds, G. Krowech, R. Howd, Review of the evidence regarding the carcinogenicity of hexavalent chromium in drinking water. J. Environ. Sci. Health – C 2006, 24, 155.
Review of the evidence regarding the carcinogenicity of hexavalent chromium in drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFWnu7k%3D&md5=babdce6e1803e48a2bd32caa0e295ef0CAS |

[5]  S. R. Shelnutt, P. Goad, D. V. Belsito, Dermatological toxicity of hexavalent chromium. Crit. Rev. Toxicol. 2007, 37, 375.
Dermatological toxicity of hexavalent chromium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1alsbY%3D&md5=e20a5e38dcfcf41973f738c8e5d167adCAS | 17612952PubMed |

[6]  P. C. Nagajyoti, K. D. Lee, T. V. M. Sreekanth, Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 2010, 8, 199.
Heavy metals, occurrence and toxicity for plants: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSnsbfF&md5=3daf5a32da2eaa6486ebbb663fe5aaaeCAS |

[7]  Guideline for Drinking-Water Quality, Fourth edn. Vol. 1, Recommendations 2011 (WHO: Geneva).

[8]  R. Jaiswal, B. Braun, ‘Unbemerkte’ Verschmutzungsoasen der Weltwirtschaft – das Beispiel der Chromsulfat-Produktion in Nordindien. Geogr. Rundsch. 2010, 62, 54.

[9]  D. Deakin, L. J. West, D. I. Stewart, B. W. D. Yardley, The leaching characteristics of chromite ore processing residue. Environ. Geochem. Health 2001, 23, 201.
The leaching characteristics of chromite ore processing residue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVGjsrs%3D&md5=a9d09cb16d6a323d0e4235f01bcd8bbfCAS |

[10]  M. Chrysochoou, S. C. Fakra, M. A. Marcus, D. H. Moon, D. Dermatas, Microstructural analyses of Cr(VI) speciation in chromite ore processing residue (COPR). Environ. Sci. Technol. 2009, 43, 5461.
Microstructural analyses of Cr(VI) speciation in chromite ore processing residue (COPR).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Ogu7s%3D&md5=d4118e788412dd96ba2e62ea6b30f23bCAS | 19708382PubMed |

[11]  C. Földi, R. Dohrmann, K. Matern, T. Mansfeldt, Characterization of chromium-containing wastes and soils affected by the production of chromium tanning agents. J. Soils Sediments 2013, 13, 1170.
Characterization of chromium-containing wastes and soils affected by the production of chromium tanning agents.Crossref | GoogleScholarGoogle Scholar |

[12]  J. G. Farmer, M. C. Graham, R. P. Thomas, C. Licona-Manzur, E. Paterson, C. D. Campbell, J. S. Geelhoed, D. G. Lumsdon, J. C. L. Meeussen, M. J. Roe, A. Conner, A. E. Fallick, R. J. F. Bewley, Assessment and modelling of the environmental chemistry and potential for remediative treatment of chromium-contaminated land. Environ. Geochem. Health 1999, 21, 331.
Assessment and modelling of the environmental chemistry and potential for remediative treatment of chromium-contaminated land.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFOhtrw%3D&md5=9b0ca82e3ad561a1db6811983e312b88CAS |

[13]  J. S. Geelhoed, J. C. L. Meeussen, M. J. Roe, S. Hillier, R. P. Thomas, J. G. Farmer, E. Paterson, Chromium remediation or release? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue. Environ. Sci. Technol. 2003, 37, 3206.
Chromium remediation or release? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1ektb8%3D&md5=b278ce59631f5d7cc1170498f97eba66CAS | 12901671PubMed |

[14]  J. S. Geelhoed, J. C. L. Meeussen, D. G. Lumsdon, S. Hillier, M. J. Roe, R. P. Thomas, R. J. F. Bewley, J. G. Farmer, E. Paterson, Modelling of chromium behaviour and transport at sites contaminated with chromite ore processing residue: Implications for remediation methods. Environ. Geochem. Health 2001, 23, 261.
Modelling of chromium behaviour and transport at sites contaminated with chromite ore processing residue: Implications for remediation methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVGjs7s%3D&md5=d97524bf9c588bd54e81ea6d7a64b34aCAS |

[15]  J. S. Geelhoed, J. C. L. Meeussen, S. Hillier, D. G. Lumsdon, R. P. Thomas, J. G. Farmer, E. Paterson, Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue. Geochim. Cosmochim. Acta 2002, 66, 3927.
Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlKitr8%3D&md5=8d69d7f2a90bc15077fe83fb661338f5CAS |

[16]  M. Chrysochoou, D. Dermatas, D. G. Grubb, D. H. Moon, C. Christodoulatos, Importance of mineralogy in the geoenvironmental characterization and treatment of chromite ore processing residue. J. Geotech. Geoenviron. Eng. 2010, 136, 510.
Importance of mineralogy in the geoenvironmental characterization and treatment of chromite ore processing residue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFyrsrc%3D&md5=68e1fb11acae1b233ab7e19af3d0c7f1CAS |

[17]  S. E. Fendorf, Surface reactions of chromium in soils and waters. Geoderma 1995, 67, 55.
Surface reactions of chromium in soils and waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntV2rtL0%3D&md5=c4c9aea066b62fb4e4f87b7b2eed1434CAS |

[18]  J. M. Zachara, D. C. Girvin, R. L. Schmidt, C. T. Resch, Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. Environ. Sci. Technol. 1987, 21, 589.
Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgu74%3D&md5=93c8e23edbdf8910d95868900449f248CAS | 19994980PubMed |

[19]  C. C. Ainsworth, D. C. Girvin, J. M. Zachara, S. C. Smith, Chromate adsorption on goethite: effects of aluminum substitution. Soil Sci. Soc. Am. J. 1989, 53, 411.
Chromate adsorption on goethite: effects of aluminum substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktlynt7k%3D&md5=ccd365c599ec1314b6bd2c1f3c4c5859CAS |

[20]  K. Mesuere, W. Fish, Chromate and oxalate adsorption on goethite. 2. Surface complexation modeling of complexation modeling of competitive adsorption. Environ. Sci. Technol. 1992, 26, 2365.
Chromate and oxalate adsorption on goethite. 2. Surface complexation modeling of complexation modeling of competitive adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtF2ntL0%3D&md5=2f46367e34ce577b0d92c549ebbad527CAS |

[21]  T. H. Hsia, S. L. Lo, C. F. Lin, D. Y. Lee, Chemical and spectroscopic evidence for specific adsorption of chromate on hydrous iron-oxide. Chemosphere 1993, 26, 1897.
Chemical and spectroscopic evidence for specific adsorption of chromate on hydrous iron-oxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsVOhtLs%3D&md5=c5026ad408f4092e5f915e8f03ada990CAS |

[22]  H. Abdel-Samad, P. R. Watson, An XPS study of the adsorption of chromate on goethite (α-FeOOH). Appl. Surf. Sci. 1997, 108, 371.
An XPS study of the adsorption of chromate on goethite (α-FeOOH).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlOqsbk%3D&md5=81a1949afca82bb6a7833f9155463ddfCAS |

[23]  S. Fendorf, M. J. Eick, P. Grossl, D. L. Sparks, Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ. Sci. Technol. 1997, 31, 315.
Arsenate and chromate retention mechanisms on goethite. 1. Surface structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitVGksQ%3D%3D&md5=2905ef1c5dd397ff7a1b9922238668a1CAS |

[24]  P. R. Grossl, M. Eick, D. L. Sparks, S. Goldberg, C. C. Ainsworth, Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 1997, 31, 321.
Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitVGktg%3D%3D&md5=001a3da79ab5444e145769676a3039a7CAS |

[25]  M. T. Aide, M. F. Cummings, The influence of pH and phosphorus on the adsorption of chromium(VI) on boehmite. Soil Sci. 1997, 162, 599.
The influence of pH and phosphorus on the adsorption of chromium(VI) on boehmite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFKjtr8%3D&md5=9f5ddd641ba47d565844950822249680CAS |

[26]  S. M. Garman, T. P. Luxton, M. J. Eick, Kinetics of chromate adsorption on goethite in the presence of sorbed silicic acid. J. Environ. Qual. 2004, 33, 1703.
Kinetics of chromate adsorption on goethite in the presence of sorbed silicic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVehsr8%3D&md5=6591c5293cd78677b7f00ad849fde5d0CAS | 15356230PubMed |

[27]  O. Ajouyed, C. Hurel, M. Ammari, L. Ben Allal, N. Marmier, Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: effects of pH, ionic strength and initial concentration. J. Hazard. Mater. 2010, 174, 616.
Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: effects of pH, ionic strength and initial concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWlsr3F&md5=843b19580539d1b503b9dc6d4927d5dcCAS | 19818554PubMed |

[28]  J. Jiang, Y. Wang, R. Xu, C. Yang, Adsorption of chromate on variable charge soils as influenced by ionic strength. Environ. Earth Sci. 2012, 66, 1155.
Adsorption of chromate on variable charge soils as influenced by ionic strength.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns12ktbs%3D&md5=9c3dd66852910c6a5eae3f838b2676b5CAS |

[29]  J. Jiang, R. Xu, Y. Wang, A. Zhao, The mechanism of chromate sorption by three variable charge soils. Chemosphere 2008, 71, 1469.
The mechanism of chromate sorption by three variable charge soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFCmtLs%3D&md5=322fbf750eddee87f731ea53281d5319CAS | 18291439PubMed |

[30]  J. M. Zachara, C. C. Ainsworth, C. E. Cowan, C. T. Resch, Adsorption of chromate by subsurface soil horizons. Soil Sci. Soc. Am. J. 1989, 53, 418.
Adsorption of chromate by subsurface soil horizons.Crossref | GoogleScholarGoogle Scholar |

[31]  M. M. Benjamin, N. S. Bloom, Effect of strong binding of anionic adsorbates on adsorption of trace metals on amorphous iron oxyhydroxide, in Adsorption from Aqueous Solution (Eds P.H. Tewari) 1981, pp. 41–60 (Plenum Press: New York).

[32]  J. M. Zachara, C. E. Cowan, R. L. Schmidt, C. C. Ainsworth, Chromate adsorption by kaolinite. Clays Clay Miner. 1988, 36, 317.
Chromate adsorption by kaolinite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlslGltLo%3D&md5=5b14adf7762244aabe10a889df73d38fCAS |

[33]  A. E. Martell, R. M. Smith, R. J. Motekaitis, NIST Critically Selected Stability Sonstants of Metal Complexes 2004 (National Institute of Standards and Technology: Gaithersburg, MD).

[34]  M. Villalobos, M. A. Trotz, J. O. Leckie, Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb(II), and U(VI) on goethite. Environ. Sci. Technol. 2001, 35, 3849.
Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb(II), and U(VI) on goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtlWitro%3D&md5=b040b105e2a9602da36f7dcab02964c2CAS | 11642443PubMed |

[35]  D. C. Adriano, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, 2nd edn 2001 (Springer: Berlin).

[36]  A. R. Kumar, P. Riyazuddin, Chromium speciation in a contaminated groundwater: redox processes and temporal variability. Environ. Monit. Assess. 2011, 176, 647.
Chromium speciation in a contaminated groundwater: redox processes and temporal variability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktl2qtL8%3D&md5=2416072bb96e40913a6df8431bd778f4CAS | 20661772PubMed |

[37]  H. H. Stanjek, W. Häusler, Quantifizierung silikatischer Tonminerale im Textur- und Pulverpräparat mit MacClayFit, in Berichte der Deutschen Ton und Tonmineralgruppe 7 (Eds R. Hermanns Stengele, M. Plötze) 2000, pp. 256–265 (DTTG: Freiberg, Germany).

[38]  U. Schwertmann, Differenzierung der Eisenoxide des Bodens durch Extraktion mit saurer Ammoniumoxalat-Lösung. Z. Pflanzenernähr. Düng. Bodenkd. 1964, 105, 194.
Differenzierung der Eisenoxide des Bodens durch Extraktion mit saurer Ammoniumoxalat-Lösung.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXotlCj&md5=e413e5ad43560dc13f2243802ade26e6CAS |

[39]  O. P. Mehra, M. L. Jackson, Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 1958, 7, 317.
Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate.Crossref | GoogleScholarGoogle Scholar |

[40]  SW-846, Method 7196A, Chromium, Hexavalent (Colorimetric) 1992 (US Environmental Protection Agency: Washington, DC).

[41]  E. K. Berner, R. A. Berner, Global Environment: Water, Air, and Geochemical Cycles 1996 (Prentice Hall: Upper Saddle River, NJ, USA).

[42]  R. A. Griffin, J. J. Jurinak, Estimation of activity-coefficients from electrical conductivity of natural aquatic systems and soil extracts. Soil Sci. 1973, 116, 26.
Estimation of activity-coefficients from electrical conductivity of natural aquatic systems and soil extracts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkvVWrtbo%3D&md5=32081cde6c4b8f497c6ca12a0becc20aCAS |

[43]  M. E. Essington, Soil and Water Chemistry: an Integrative Approach 2004 (CRC Press: Boca Raton, FL, USA).

[44]  G. Sposito, The Surface Chemistry of Soils 1984 (Oxford University Press: Oxford, UK).

[45]  G. Choppala, N. Bolan, D. Lamb, A. Kunhikrishnan, Comparative sorption and mobility of Cr(III) and Cr(VI) species in a range of soils: Implications to bioavailability. Water Air Soil Pollut. 1699, 2013, 1.

[46]  E. A. Ferreiro, A. K. Helmy, S. G. Debussetti, Molybdate sorption by oxides of aluminum and iron. Z. Pflanzenernähr. Bodenkd. 1985, 148, 559.
Molybdate sorption by oxides of aluminum and iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFCjtrc%3D&md5=46b283d4e368675240c1d68da76fd9fbCAS |

[47]  K. Mesuere, W. Fish, Chromate and oxalate adsorption on goethite. 1. Calibration of surface complexation models. Environ. Sci. Technol. 1992, 26, 2357.
Chromate and oxalate adsorption on goethite. 1. Calibration of surface complexation models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtF2ntLw%3D&md5=e2ba790509729ae4dc5f15bd32d93133CAS |

[48]  A. van Geen, A. P. Robertson, J. O. Leckie, Complexation of carbonate species at the goethit surface: implications for adsorption of metal ions in natural waters. Geochim. Cosmochim. Acta 1994, 58, 2073.
Complexation of carbonate species at the goethit surface: implications for adsorption of metal ions in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktFOhsL4%3D&md5=310e78f4aaedc51d2bc5c4f981d90730CAS |

[49]  S. Goldberg, Adsorption models incorporated into chemical equilibrium models, in Chemical Equilibrium and Reaction Models 1995, pp. 75–95 (Soil Science Society of America: Madison, WI, USA).