Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Transformations that affect fate, form and bioavailability of inorganic nanoparticles in aquatic sediments

Richard Kynaston Cross A B , Charles Tyler A and Tamara S Galloway A
+ Author Affiliations
- Author Affiliations

A Geoffrey Pope Building, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.

B Corresponding author. Email: rc434@exeter.ac.uk




Richard Cross is a Ph.D. scholar whose research is focussed on the factors that determine bioaccumulation of engineered nanomaterials in sediment-dwelling organisms. His work considers the transformations that engineered nanoparticles undergo within aquatic ecosystems, in order to investigate the link between the physicochemical properties of engineered nanoparticles and biological factors that determine the bioavailability of these anthropogenic pollutants. The focus on sediment-dwelling species is in recognition of the important ecological role of these organisms and the potential risk they face from engineered nanoparticles in the future.



Charles Tyler is a reproductive physiologist and ecotoxicologist. He is Deputy Head of Biosciences and Academic Lead in the College of Life and Environmental Sciences at the University of Exeter. His research spans investigations into the effect mechanisms of endocrine-disrupting chemicals, pharmaceuticals and nanoparticles, to assessing population-level effects of these environmental contaminants in wildlife, principally fish. He has published more than 220 full research papers and peer-reviewed book chapters and reviews with ~13 000 citations. In 2012, Tyler was awarded The Fisheries Society of the British Isles Beverton Medal for ground-breaking research in fish biology.



Tamara Galloway is Professor of Ecotoxicology at the University of Exeter and also holds an honorary Chair at University of Exeter Medical School. Tamara's research focus is in understanding how organisms adapt and survive in polluted environments, what makes some organisms more susceptible than others, and how we can use this information to protect the environment. She studies the health effects of some of the most pressing priority and emerging pollutants, including complex organics, plastics additives, metals and nanoparticles.

Environmental Chemistry 12(6) 627-642 https://doi.org/10.1071/EN14273
Submitted: 18 December 2014  Accepted: 6 May 2015   Published: 14 August 2015

Environmental context. Engineered nanomaterials are increasingly being used and their release to the aquatic environment poses potential risk. We review the research on transformations of engineered nanomaterial in the aquatic sediment environments, and consider the implications of their release. The key factors defining the fate of engineered nanomaterials in aqueous and sediment systems are identified.

Abstract. Inorganic nanoparticles are at risk of release into the aquatic environment owing to their function, use and methods of disposal. Aquatic sediments are predicted to be a large potential sink for such engineered nanomaterial (ENM) emissions. On entering water bodies, ENMs undergo a range of transformations dependent on the physicochemical nature of the immediate environment, as they pass from the surface waters to sediments and into sediment-dwelling organisms. This review assesses the current state of research on transformations of metal-based ENMs in the aquatic environment, and considers the implications of these transformations for the fate and persistence of ENMs and their bioavailability to organisms within the benthos. We identify the following factors of key importance in the fate pathways of ENMs in aqueous systems: (1) extracellular polymeric substances, prevalent in many aquatic systems, create the potential for temporal fluxes of ENMs to the benthos, currently unaccounted for in predictive models. (2) Weak secondary deposition onto sediment grains may dominate sediment–ENM interactions for larger aggregates >500 nm, potentially granting dynamic long-term mobility of ENMs within sediments. (3) Sulfurisation, aggregation and reduction in the presence of humic acid is likely to limit the presence of dissolved ions from soluble ENMs within sediments. (4) Key benthic species are identified based on their ecosystem functionality and potential for ENM exposure. On the basis of these findings, we recommend future research areas which will support prospective risk assessment by enhancing our knowledge of the transformations ENMs undergo and the likely effects these will have.


References

[1]  M. C. Roco, C. A. Mirkin, M. C. Hersam, Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook 2011 (Springer Netherlands)10.1007/978-94-007-1168-6

[2]  A. B. Cundy, L. Hopkinson, R. L. Whitby, Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci. Total Environ. 2008, 400, 42.
Use of iron-based technologies in contaminated land and groundwater remediation: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yqsr%2FF&md5=82c6936e45b69648146db9073105c8caCAS | 18692221PubMed |

[3]  Y. Zhang, Y. Li, J. Li, L. Hu, X. Zheng, Enhanced removal of nitrate by a novel composite: nanoscale zero-valent iron supported on pillared clay. Chem. Eng. J. 2011, 171, 526.
Enhanced removal of nitrate by a novel composite: nanoscale zero-valent iron supported on pillared clay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVektr4%3D&md5=c42cebdcb2016ef0ab251d11982682d2CAS |

[4]  J. M. Lagaron, A. Lopez-Rubio, Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends Food Sci. Technol. 2011, 22, 611.
Nanotechnology for bioplastics: opportunities, challenges and strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVarsL3K&md5=7a3c694fa8c83b7f3deaf8040a660f24CAS |

[5]  B. Van Devener, S. L. Anderson, Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3. Energy Fuels 2006, 20, 1886.
Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsV2htb0%3D&md5=51c0a8dd1b8d46e8ddb5a349ba01d070CAS |

[6]  J. Lee, S. Mahendra, P. J. Alvarez, Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 2010, 4, 3580.
Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslehu7w%3D&md5=48f5cdc0bfd44077c7a50c622f622976CAS | 20695513PubMed |

[7]  L. Mu, R. L. Sprando, Application of nanotechnology in cosmetics. Pharm. Res. 2010, 27, 1746.
Application of nanotechnology in cosmetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFOisL0%3D&md5=a043ee4aa4b1bcd24508f1e309d492a4CAS | 20407919PubMed |

[8]  O. Salata, Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2004, 2, 3.
Applications of nanoparticles in biology and medicine.Crossref | GoogleScholarGoogle Scholar | 15119954PubMed |

[9]  S. J. Klaine, A. A. Koelmans, N. Horne, S. Carley, R. D. Handy, L. Kapustka, B. Nowack, F. von der Kammer, Paradigms to assess the environmental impact of manufactured nanomaterials. Environ. Toxicol. Chem. 2012, 31, 3.
Paradigms to assess the environmental impact of manufactured nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yksbfL&md5=d76847ad23139e08f4c1b3a834ce011aCAS | 22162122PubMed |

[10]  Terminology for Nanomaterials PAS 136:2007 2007 (British Standards Institution) Available at http://shop.bsigroup.com/forms/Nano/PAS-136/ [verified 26 June 2015].

[11]  S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
Nanomaterials in the environment: behavior, fate, bioavailability, and effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVersLjJ&md5=db8b539a7b7c8782cda2e5885df35098CAS | 19086204PubMed |

[12]  J. Potocnik, Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial (2011/696/EU) 2011. Available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:en:PDF [verified 10 April 2014].

[13]  N. C. Mueller, B. Nowack, Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008, 42, 4447.
Exposure modeling of engineered nanoparticles in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslOju7k%3D&md5=1c3c1d628fcbcf34cc641d7d72d7a51bCAS | 18605569PubMed |

[14]  F. Gottschalk, T. Sonderer, R. W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216.
Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyhtL%2FP&md5=f78c2b5d2a75facc712dbe818515c482CAS | 20000512PubMed |

[15]  F. Gottschalk, T. Sonderer, R. W. Scholz, B. Nowack, Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ. Toxicol. Chem. 2010, 29, 1036.
| 1:CAS:528:DC%2BC3cXpslyktb0%3D&md5=2b04c9d1896a4734861cd426af448803CAS | 20821538PubMed |

[16]  C. O. Hendren, X. Mesnard, J. Droge, M. R. Wiesner, Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ. Sci. Technol. 2011, 45, 2562.
Estimating production data for five engineered nanomaterials as a basis for exposure assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFyju7Y%3D&md5=d314975041d3a39822be3d8a07f4a9b2CAS | 21391627PubMed |

[17]  R. Arvidsson, S. Molander, B. A. Sandén, M. Hassellöv, Challenges in exposure modeling of nanoparticles in aquatic environments. Hum. Ecol. Risk Assess. 2011, 17, 245.
Challenges in exposure modeling of nanoparticles in aquatic environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFeht7k%3D&md5=e7bb2812f772593777c06b60d2b4b579CAS |

[18]  A. A. Keller, S. McFerran, A. Lazareva, S. Suh, Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013, 15, 1692.
Global life cycle releases of engineered nanomaterials.Crossref | GoogleScholarGoogle Scholar |

[19]  L. Hou, K. Li, Y. Ding, Y. Li, J. Chen, X. Wu, X. Li, Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction. Chemosphere 2012, 87, 248.
Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFWntL0%3D&md5=f6b12416c187407b16ba87c9693e3b96CAS | 22245077PubMed |

[20]  R. Kaegi, A. Voegelin, B. Sinnet, S. Zuleeg, H. Hagendorfer, M. Burkhardt, H. Siegrist, Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ. Sci. Technol. 2011, 45, 3902.
Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Cqtbc%3D&md5=feda3dd420414688ee03e0cb13251e6aCAS | 21466186PubMed |

[21]  D. E. Meyer, M. A. Curran, M. A. Gonzalez, An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environ. Sci. Technol. 2009, 43, 1256.
An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOktbk%3D&md5=c3bb291c6a0f34c34caaf56e1fcd6f9dCAS | 19350888PubMed |

[22]  F. Piccinno, F. Gottschalk, S. Seeger, B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res. 2012, 14, 1109.
Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world.Crossref | GoogleScholarGoogle Scholar |

[23]  R. Kaegi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser, S. Zuleeg, H. Simmler, S. Brunner, H. Vonmont, M. Burkhardt, M. Boller, Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 2008, 156, 233.
Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12rtLvI&md5=64836a94b9f9ef376192e675fc000ed5CAS | 18824285PubMed |

[24]  D. Cleveland, S. E. Long, P. L. Pennington, E. Cooper, M. H. Fulton, G. I. Scott, T. Brewer, J. Davis, E. J. Petersen, L. Wood, Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products. Sci. Total Environ. 2012, 421–422, 267.
Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products.Crossref | GoogleScholarGoogle Scholar | 22369864PubMed |

[25]  E. S. Bernhardt, B. P. Colman, M. F. Hochella, B. J. Cardinale, R. M. Nisbet, C. J. Richardson, L. Yin, An ecological perspective on nanomaterial impacts in the environment. J. Environ. Qual. 2010, 39, 1954.
An ecological perspective on nanomaterial impacts in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKlu7zE&md5=57c52fabb93db2d766511ae5420c0cf4CAS | 21284292PubMed |

[26]  V. L. Colvin, The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 2003, 21, 1166.
The potential environmental impact of engineered nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Cltr8%3D&md5=0050b9ccd139dbfc4e82becfd4b6d877CAS | 14520401PubMed |

[27]  M. A. Beketov, N. Cedergreen, L. Y. Wick, M. Kattwinkel, S. Duquesne, M. Liess, Sediment toxicity testing for prospective risk assessment – a new framework and how to establish it. Hum. Ecol. Risk Assess. 2013, 19, 98.
Sediment toxicity testing for prospective risk assessment – a new framework and how to establish it.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFektLo%3D&md5=2c26d06bc014b81b1e7a30c8b8bd7797CAS |

[28]  B. Stolpe, M. Hassellöv, Changes in size distribution of freshwater nanoscale colloidal matter and associated elements on mixing with seawater. Geochim. Cosmochim. Acta 2007, 71, 3292.
Changes in size distribution of freshwater nanoscale colloidal matter and associated elements on mixing with seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFagt7w%3D&md5=7ea12292900973975f3b4dfdc27efa99CAS |

[29]  L.-S. Wen, P. H. Santschi, G. A. Gill, C. L. Paternostro, R. D. Lehman, Colloidal and particulate silver in river and estuarine waters of Texas. Environ. Sci. Technol. 1997, 31, 723.
Colloidal and particulate silver in river and estuarine waters of Texas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotVWlsw%3D%3D&md5=f5e2e7918ead07047a76fc1bc7d3d130CAS |

[30]  A. R. Petosa, D. P. Jaisi, I. R. Quevedo, M. Elimelech, N. Tufenkji, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 2010, 44, 6532.
Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVSgt7g%3D&md5=608262aa0a295425f14883538d9993bfCAS | 20687602PubMed |

[31]  S. L. Chinnapongse, R. I. MacCuspie, V. A. Hackley, Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci. Total Environ. 2011, 409, 2443.
Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1SmtbY%3D&md5=dad88d86b423cb39ecf5c8e52d762428CAS | 21481439PubMed |

[32]  L. Lanceleur, J. Schafer, J. F. Chiffoleau, G. Blanc, D. Auger, S. Renault, M. Baudrimont, S. Audry, Long-term records of cadmium and silver contamination in sediments and oysters from the Gironde fluvial-estuarine continuum – evidence of changing silver sources. Chemosphere 2011, 85, 1299.
Long-term records of cadmium and silver contamination in sediments and oysters from the Gironde fluvial-estuarine continuum – evidence of changing silver sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKmurrN&md5=3036d65da93b7a0737024c624e025dd9CAS | 21868056PubMed |

[33]  L. Lanceleur, J. Schäfer, C. Bossy, A. Coynel, A. Larrose, M. Masson, G. Blanc, Silver fluxes to the Gironde Estuary – eleven years (1999–2009) of monitoring at the watershed scale. Appl. Geochem. 2011, 26, 797.
Silver fluxes to the Gironde Estuary – eleven years (1999–2009) of monitoring at the watershed scale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFeiu7g%3D&md5=7e4cad5379f9accd44fb70795ed7a01cCAS |

[34]  A. Praetorius, M. Scheringer, K. Hungerbuhler, Development of environmental fate models for engineered nanoparticles – a case study of TiO2 nanoparticles in the Rhine River. Environ. Sci. Technol. 2012, 46, 6705.
Development of environmental fate models for engineered nanoparticles – a case study of TiO2 nanoparticles in the Rhine River.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFemsbk%3D&md5=79a8e959d16e759f1a9a0169a230765dCAS | 22502632PubMed |

[35]  G. V. Lowry, B. P. Espinasse, A. R. Badireddy, C. J. Richardson, B. C. Reinsch, L. D. Bryant, A. J. Bone, A. Deonarine, S. Chae, M. Therezien, B. P. Colman, H. Hsu-Kim, E. S. Bernhardt, C. W. Matson, M. R. Wiesner, Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large-scale freshwater emergent wetland. Environ. Sci. Technol. 2012, 46, 7027.
Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large-scale freshwater emergent wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVyqtbk%3D&md5=7cc7de4dbc4569ef07a53c4664e10f4bCAS | 22463850PubMed |

[36]  N. J. Diepens, G. H. P. Arts, T. C. M. Brock, H. Smidt, P. J. Van Den Brink, M. J. Van Den Heuvel-Greve, A. A. Koelmans, Sediment toxicity testing of organic chemicals in the context of prospective risk assessment: a review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 255.
Sediment toxicity testing of organic chemicals in the context of prospective risk assessment: a review.Crossref | GoogleScholarGoogle Scholar |

[37]  D. Kühnel, C. Nickel, The OECD expert meeting on ecotoxicology and environmental fate – towards the development of improved OECD guidelines for the testing of nanomaterials. Sci. Total Environ. 2014, 472, 347.
The OECD expert meeting on ecotoxicology and environmental fate – towards the development of improved OECD guidelines for the testing of nanomaterials.Crossref | GoogleScholarGoogle Scholar | 24461369PubMed |

[38]  M. N. Moore, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 2006, 32, 967.
Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCqur3P&md5=9c7c2f8977db6f120ac466e4969867bfCAS | 16859745PubMed |

[39]  G. V. Lowry, K. B. Gregory, S. C. Apte, J. R. Lead, Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893.
Transformations of nanomaterials in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFajtbs%3D&md5=202ab7784206ba66e3867533b5046439CAS | 22582927PubMed |

[40]  O. Gustafsson, P. M. Gschwend, Aquatic colloids: concepts, definitions and current challenges. Limnol. Oceanogr. 1997, 42, 519.
Aquatic colloids: concepts, definitions and current challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsF2hu74%3D&md5=82db057b4575f1077da2f93493a581cbCAS |

[41]  Y. Ju-Nam, J. R. Lead, Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ. 2008, 400, 396.
Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yqsr%2FL&md5=6f0de147985928a967969f689d6bf601CAS | 18715626PubMed |

[42]  D. Zhou, A. A. Keller, Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res. 2010, 44, 2948.
Role of morphology in the aggregation kinetics of ZnO nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFGqsLo%3D&md5=19ce5f325bd392575ed629fa28c03796CAS | 20227744PubMed |

[43]  R. A. French, A. R. Jacobson, B. Kim, S. L. Isley, R. L. Penn, P. C. Baveye, Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ. Sci. Technol. 2009, 43, 1354.
Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlOksg%3D%3D&md5=f1d0e73e8e306ae23d03a3000eff8379CAS | 19350903PubMed |

[44]  S. W. Bian, I. A. Mudunkotuwa, T. Rupasinghe, V. H. Grassian, Aggregation and dissolution of 4-nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 2011, 27, 6059.
Aggregation and dissolution of 4-nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVSls7w%3D&md5=e3d09c68c0d5d02aa8ecefaad0a9d744CAS | 21500814PubMed |

[45]  I. Römer, T. A. White, M. Baalousha, K. Chipman, M. R. Viant, J. R. Lead, Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J. Chromatogr. A 2011, 1218, 4226.
Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests.Crossref | GoogleScholarGoogle Scholar | 21529813PubMed |

[46]  Y. Zhang, Y. Chen, P. Westerhoff, K. Hristovski, J. C. Crittenden, Stability of commercial metal oxide nanoparticles in water. Water Res. 2008, 42, 2204.
Stability of commercial metal oxide nanoparticles in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVCitbY%3D&md5=2d4340ad894ed190fca6e3c0e3ebe0d2CAS | 18164742PubMed |

[47]  K. A. Dunphy Guzman, M. P. Finnegan, J. F. Banfield, Influence of surface potential on aggregation and transport of titania nanoparticles. Environ. Sci. Technol. 2006, 40, 7688.
Influence of surface potential on aggregation and transport of titania nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKntrzI&md5=d5b1d79349d0752acd657b80bbf17f0cCAS |

[48]  S. A. Cumberland, J. R. Lead, Particle size distributions of silver nanoparticles at environmentally relevant conditions. J. Chromatogr. A 2009, 1216, 9099.
Particle size distributions of silver nanoparticles at environmentally relevant conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSgsbvM&md5=e7b9b726b2e86e9238cb5b0ecf654661CAS | 19647834PubMed |

[49]  D. Jassby, J. Farner Budarz, M. Wiesner, Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environ. Sci. Technol. 2012, 46, 6934.
Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1SlsA%3D%3D&md5=1f3ab736a4c60db9fa814fa9b0bfd436CAS | 22225505PubMed |

[50]  A. A. Keller, H. Wang, D. Zhou, H. S. Lenihan, G. Cherr, B. J. Cardinale, R. Miller, Z. Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 2010, 44, 1962.
Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFWgtLk%3D&md5=bed7821614a2e9482cbce857621b8ac6CAS | 20151631PubMed |

[51]  J. T. Quik, M. C. Stuart, M. Wouterse, W. Peijnenburg, A. J. Hendriks, D. van de Meent, Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environ. Toxicol. Chem. 2012, 31, 1019.
Natural colloids are the dominant factor in the sedimentation of nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFyit7Y%3D&md5=533a9f6e7f995cf229d8cb0f4dd47701CAS | 22447393PubMed |

[52]  J. T. Quik, I. Velzeboer, M. Wouterse, A. A. Koelmans, D. van de Meent, Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res. 2014, 48, 269.
Heteroaggregation and sedimentation rates for nanomaterials in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2ntL%2FM&md5=00726910eca65e3f2236eb55a4ceebbdCAS | 24119930PubMed |

[53]  C. Botta, J. Labille, M. Auffan, D. Borschneck, H. Miche, M. Cabie, A. Masion, J. Rose, J. Y. Bottero, TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environ. Pollut. 2011, 159, 1543.
TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFOqtr4%3D&md5=6d10a3f39489cad43bd5bd6de0b2cff3CAS | 21481996PubMed |

[54]  C. M. Zhao, W. X. Wang, Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ. Sci. Technol. 2012, 46, 11345.
Size-dependent uptake of silver nanoparticles in Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGjsbbP&md5=185a85e6d24518b2282e5a913c74fafdCAS | 22974052PubMed |

[55]  K. Park, G. Tuttle, F. Sinche, S. L. Harper, Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio). Arch. Pharm. Res. 2013, 36, 125.
Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFWgtw%3D%3D&md5=dee98e0522676d12b812fe0ab3ee5f53CAS | 23325492PubMed |

[56]  E. A. Meulenkamp, Size dependence of the dissolution of ZnO nanoparticles. J. Phys. Chem. B 1998, 102, 7764.
Size dependence of the dissolution of ZnO nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvFWlurc%3D&md5=8a82efe3bc857a054da98d26c68b76e6CAS |

[57]  I. A. Mudunkotuwa, T. Rupasinghe, C. M. Wu, V. H. Grassian, Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 2012, 28, 396.
Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFansLjO&md5=f62754a08403c92de7e01af185c0473fCAS | 22122742PubMed |

[58]  J. M. Zook, S. E. Long, D. Cleveland, C. L. Geronimo, R. I. MacCuspie, Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal. Bioanal. Chem. 2011, 401, 1993.
Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFOru7s%3D&md5=6af053fe2d756dee55b10578a5065524CAS | 21808990PubMed |

[59]  J. T. Dahle, K. Livi, Y. Arai, Effects of pH and phosphate on CeO nanoparticle dissolution. Chemosphere 2015, 119, 1365.
Effects of pH and phosphate on CeO nanoparticle dissolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1SnurY%3D&md5=8401df2813ab3ec19c63be13e015962cCAS | 24630459PubMed |

[60]  X. Li, J. J. Lenhart, Aggregation and dissolution of silver nanoparticles in natural surface water. Environ. Sci. Technol. 2012, 46, 5378.
Aggregation and dissolution of silver nanoparticles in natural surface water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFemsLk%3D&md5=aa97d14312b2e11e55116dfe250e7705CAS | 22502776PubMed |

[61]  S. M. Majedi, H. K. Lee, B. C. Kelly, Role of water temperature in the fate and transport of zinc oxide nanoparticles in aquatic environment. J. Phys. Conf. Ser. 2013, 429, 012039.
Role of water temperature in the fate and transport of zinc oxide nanoparticles in aquatic environment.Crossref | GoogleScholarGoogle Scholar |

[62]  N. M. Franklin, N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd, P. S. Casey, Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 2007, 41, 8484.
Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWqs7fF&md5=f8e680e33a0c14d4f28b2f8531aa91baCAS | 18200883PubMed |

[63]  P. Borm, F. C. Klaessig, T. D. Landry, B. Moudgil, J. Pauluhn, K. Thomas, R. Trottier, S. Wood, Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 2005, 90, 23.
Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles.Crossref | GoogleScholarGoogle Scholar |

[64]  N. B. Saleh, L. D. Pfefferle, M. Elimelech, Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ. Sci. Technol. 2010, 44, 2412.
Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVaisLs%3D&md5=80ea2b883167c5179189e6bfe650eb7eCAS | 20184360PubMed |

[65]  S. Diegoli, A. L. Manciulea, S. Begum, I. P. Jones, J. R. Lead, J. A. Preece, Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci. Total Environ. 2008, 402, 51.
Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Kqu7s%3D&md5=fa01e1ce3ca7483abe459f5994d6079eCAS | 18534664PubMed |

[66]  V. L. Pallem, H. A. Stretz, M. J. M. Wells, Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy. Environ. Sci. Technol. 2009, 43, 7531.
Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslClurs%3D&md5=2fd46218199a6dd19fda43102a3c2aacCAS | 19848172PubMed |

[67]  K. L. Chen, M. Elimelech, Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J. Colloid Interface Sci. 2007, 309, 126.
Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtl2jt78%3D&md5=8b721b16832f263fa3d809f82e0f2f96CAS | 17331529PubMed |

[68]  A. Deonarine, B. L. Lau, G. R. Aiken, J. N. Ryan, H. Hsu-Kim, Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles. Environ. Sci. Technol. 2011, 45, 3217.
Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGnsb8%3D&md5=5a9c735029c25e64240a40a027bb78d9CAS | 21291228PubMed |

[69]  A. J. Pelley, N. Tufenkji, Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. J. Colloid Interface Sci. 2008, 321, 74.
Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvFOhtb4%3D&md5=6806b02d937ee033843b8a5556de9254CAS | 18280489PubMed |

[70]  E. Illés, E. Tombacz, The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid Interface Sci. 2006, 295, 115.
The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles.Crossref | GoogleScholarGoogle Scholar | 16139290PubMed |

[71]  B. J. Thio, D. Zhou, A. A. Keller, Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J. Hazard. Mater. 2011, 189, 556.
Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVelur0%3D&md5=839a14b4ce529f77cbf94cfa949b3c83CAS | 21429667PubMed |

[72]  J. Labille, J. Feng, C. Botta, D. Borschneck, M. Sammut, M. Cabie, M. Auffan, J. Rose, J. Y. Bottero, Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environ. Pollut. 2010, 158, 3482.
Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Gjs7nO&md5=58f308b5ea9f859d37423efea5f86467CAS | 20346555PubMed |

[73]  E. F. Delong, D. G. Franks, A. L. Alldredge, Phylogenetic diversity of aggregate-attached vs free-living marine bacterial assemblages. Limnol. Oceanogr. 1993, 38, 924.
Phylogenetic diversity of aggregate-attached vs free-living marine bacterial assemblages.Crossref | GoogleScholarGoogle Scholar |

[74]  A. L. Alldredge, U. Passow, B. E. Logan, The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 1993, 40, 1131.
The abundance and significance of a class of large, transparent organic particles in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvVyjsrw%3D&md5=6a4a817b47dc645a0ded65f059eae5baCAS |

[75]  V. L. Asper, Measuring the flux and sinking speed of marine snow aggregates. Deep-Sea Res. A, Oceanogr. Res. Pap. 1987, 34, 1.
Measuring the flux and sinking speed of marine snow aggregates.Crossref | GoogleScholarGoogle Scholar |

[76]  U. Passow, Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 2002, 55, 287.
Transparent exopolymer particles (TEP) in aquatic environments.Crossref | GoogleScholarGoogle Scholar |

[77]  A. L. Alldredge, M. W. Silver, Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 1988, 20, 41.
Characteristics, dynamics and significance of marine snow.Crossref | GoogleScholarGoogle Scholar |

[78]  J. J. Doyle, V. Palumbo, B. D. Huey, J. E. Ward, Behavior of titanium dioxide nanoparticles in three aqueous media samples: agglomeration and implications for benthic deposition. Water Air Soil Pollut. 2014, 225, 2106.
Behavior of titanium dioxide nanoparticles in three aqueous media samples: agglomeration and implications for benthic deposition.Crossref | GoogleScholarGoogle Scholar |

[79]  B. E. Logan, U. Passow, A. L. Alldredge, H.-P. Grossartt, M. Simont, Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep Sea Res. Part II Top. Stud. Oceanogr. 1995, 42, 203.
Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP).Crossref | GoogleScholarGoogle Scholar |

[80]  L. K. Limbach, R. Bereiter, E. Müller, R. Krebs, R. Gälli, W. J. Stark, Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ. Sci. Technol. 2008, 42, 5828.
Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1yqsLw%3D&md5=a3489ce4e912cfe3b355381b0c5b597eCAS | 18754516PubMed |

[81]  C. S. Chen, J. M. Anaya, S. Zhang, J. Spurgin, C. Y. Chuang, C. Xu, A. J/ Miao, E. Y. T. Chen, K. A. Schwehr, Y. Jiang, A. Quigg, P. H. Santschi, W. C. Chin, Effects of engineered nanoparticles on the assembly of exopolymeric substances from phytoplankton. PLoS One 2011, 6, e21865.
A. J/ Miao, E. Y. T. Chen, K. A. Schwehr, Y. Jiang, A. Quigg, P. H. Santschi, W. C. Chin, Effects of engineered nanoparticles on the assembly of exopolymeric substances from phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCns73K&md5=1cd23a65f03c70422552c43ec96011ddCAS | 21811550PubMed |

[82]  S. Zhang, Y. Jiang, C. S. Chen, J. Spurgin, K. A. Schwehr, A. Quigg, W. C. Chin, P. H. Satschi, Aggregation, dissolution, and stability of quantum dots in marine environments: importance of extracellular polymeric substances. Environ. Sci. Technol. 2012, 46, 8764.
Aggregation, dissolution, and stability of quantum dots in marine environments: importance of extracellular polymeric substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSju7zN&md5=a45f29b9686367a35bcd817223955549CAS | 22834414PubMed |

[83]  D. P. Morris, H. Zagarese, C. E. Williamson, E. G. Balseiro, B. R. Hargreaves, B. Modenutti, R. Moeller, C. Queimalinos, The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 1995, 40, 1381.
The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XpvVOlsQ%3D%3D&md5=b266a75386e63b9b44346755d23876feCAS |

[84]  U. Riebesell, Factors controlling the formation of marine snow and its sustained residence in surface waters. Limnol. Oceanogr. 1992, 37, 63.
Factors controlling the formation of marine snow and its sustained residence in surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkslGrurw%3D&md5=054e439a6680b7ab3702f31e3d16351cCAS |

[85]  T. Y. Sun, F. Gottschalk, K. Hungerbuhler, B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ. Pollut. 2014, 185, 69.
Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFymtbbN&md5=fbbd0b22b15e5553394113656713bcd2CAS | 24220022PubMed |

[86]  I. Velzeboer, J. T. Quik, D. van de Meent, A. A. Koelmans, Rapid settling of nanoparticles due to heteroaggregation with suspended sediment. Environ. Toxicol. Chem. 2014, 33, 1766.
Rapid settling of nanoparticles due to heteroaggregation with suspended sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFKlsbnJ&md5=b85a462089073043766ae98a9d0699ebCAS | 24753080PubMed |

[87]  A. A. Koelmans, J. T. K. Quik, I. Velzeboer, Lake retention of manufactured nanoparticles. Environ. Pollut. 2015, 196, 171.
Lake retention of manufactured nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsl2hurbF&md5=5f4f43e0619cd4bba691d9ed15384453CAS | 25463711PubMed |

[88]  M. Gophen, W. Geller, Filter mesh size and food particle uptake by Daphnia. Oecologia 1984, 64, 408.
Filter mesh size and food particle uptake by Daphnia.Crossref | GoogleScholarGoogle Scholar |

[89]  M. Filella, C. Rellstab, V. Chanudet, P. Spaak, Effect of the filter feeder Daphnia on the particle size distribution of inorganic colloids in freshwaters. Water Res. 2008, 42, 1919.
Effect of the filter feeder Daphnia on the particle size distribution of inorganic colloids in freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVCitrY%3D&md5=144c4f047851766e76b7e0c0f1801264CAS | 18155744PubMed |

[90]  S. Park, J. Woodhall, G. Ma, J. G. Veinot, M. S. Cresser, A. B. Boxall, Regulatory ecotoxicity testing of engineered nanoparticles: are the results relevant to the natural environment? Nanotoxicology 2014, 8, 583.
Regulatory ecotoxicity testing of engineered nanoparticles: are the results relevant to the natural environment?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFels7rM&md5=ebac851d6af075cb60acd68c5b3f8289CAS | 23789836PubMed |

[91]  J. T. Quik, J. A. Vonk, S. F. Hansen, A. Baun, D. Van De Meent, How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ. Int. 2011, 37, 1068.
How to assess exposure of aquatic organisms to manufactured nanoparticles?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVWnuro%3D&md5=0627c9bf62576209416272c8d5f9d23eCAS | 21411153PubMed |

[92]  S. Ma, D. Lin, The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ. Sci. Process. Impacts 2013, 15, 145.
The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFWgt7vN&md5=38f517fbf4d54eb829d98bd2d5407471CAS | 24592433PubMed |

[93]  M. O. Montes, S. K. Hanna, H. S. Lenihan, A. A. Keller, Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J. Hazard. Mater. 2012, 225–226, 139.
Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder.Crossref | GoogleScholarGoogle Scholar | 22614026PubMed |

[94]  R. L. Foster-Smith, The effect of concentration of suspension on the filtration rates and pseudofaecal production for Mytilus edulis L., Cerastoderma edule (L.) and Venerupis pullastra (Montagu). J. Exp. Mar. Biol. Ecol. 1975, 17, 1.
The effect of concentration of suspension on the filtration rates and pseudofaecal production for Mytilus edulis L., Cerastoderma edule (L.) and Venerupis pullastra (Montagu).Crossref | GoogleScholarGoogle Scholar |

[95]  J. S. Crater, R. L. Carrier, Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol. Biosci. 2010, 10, 1473.
Barrier properties of gastrointestinal mucus to nanoparticle transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSmtbfL&md5=34f57b6b57426220b020dcd154b26c60CAS | 20857389PubMed |

[96]  Z. J. Zhu, R. Carboni, M. J. Quercio, B. Yan, O. R. Miranda, D. L. Anderton, K. F. Arcaro, V. M. Rotello, R. W. Vachet, Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small 2010, 6, 2261.
Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yktbnE&md5=2c7e7de00938a2677d8cac51425f01b8CAS | 20842664PubMed |

[97]  A. Verma, F. Stellacci, Effect of surface properties on nanoparticle–cell interactions. Small 2010, 6, 12.
Effect of surface properties on nanoparticle–cell interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFymsg%3D%3D&md5=df61fb9452df3fc17e1233810831fd45CAS | 19844908PubMed |

[98]  B. Zhao, L. Sun, W. Zhang, Y. Wang, J. Zhu, X. Zhu, L. Y. C. Li, Z. Zhang, Y. Zhang, Secretion of intestinal goblet cells: a novel excretion pathway of nanoparticles. Nanomedicine (Lond.) 2014, 10, 839.
| 1:CAS:528:DC%2BC2cXhtV2rsbk%3D&md5=f48d59b2e40dd601fa2bacaa955092fdCAS |

[99]  M. S. Hull, P. Chaurand, J. Rose, M. Auffan, J. Y. Bottero, J. C. Jones, I. R. Schultz, P. J. Vikesland, Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles. Environ. Sci. Technol. 2011, 45, 6592.
Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFCnu7g%3D&md5=b59034de7a5a2cad476e889eae4e0933CAS | 21671611PubMed |

[100]  G. Graf, R. Rosenberg, Bioresuspension and biodeposition: a review. J. Mar. Syst. 1997, 11, 269.
Bioresuspension and biodeposition: a review.Crossref | GoogleScholarGoogle Scholar |

[101]  A. A. Rowden, M. B. Jones, A. W. Morris, The role of Callianassa subterranea (Montagu) (Thalassinidea) in sediment resuspension in the North Sea. Cont. Shelf Res. 1998, 18, 1365.
The role of Callianassa subterranea (Montagu) (Thalassinidea) in sediment resuspension in the North Sea.Crossref | GoogleScholarGoogle Scholar |

[102]  G. Krantzberg, The influence of bioturbation on physical, chemical and biological parameters in aquatic environments: a review. Environ. Pollut. A 1985, 39, 99.
The influence of bioturbation on physical, chemical and biological parameters in aquatic environments: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXls1Glt7o%3D&md5=e4f12f412f1ff7d63411dcd842764645CAS |

[103]  J. W. Moreau, P. K. Weber, M. C. Martin, B. Gilbert, I. D. Hutcheon, J. F. Banfield, Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 2007, 316, 1600.
Extracellular proteins limit the dispersal of biogenic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtl2js7Y%3D&md5=e37d48a60b3236cf26c93b97c3f13e77CAS | 17569859PubMed |

[104]  A. J. Bone, B. P. Colman, A. P. Gondikas, K. M. Newton, K. H. Harrold, R. M. Cory, J. M. Unrine, S. J. Klaine, C. W. Matson, R. T. D. Giulio, Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: Part 2 – toxicity and Ag speciation. Environ. Sci. Technol. 2012, 46, 6925.
Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: Part 2 – toxicity and Ag speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvV2ntrc%3D&md5=a0b3a510a5062f4213572f1cd22b1ad3CAS | 22680837PubMed |

[105]  J. E. Ward, D. J. Kach, Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 2009, 68, 137.
Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2ksL8%3D&md5=e309fc9ce828ab7209ceede7597edc27CAS | 19525006PubMed |

[106]  G. Cornelis, L. Pang, C. Doolette, J. K. Kirby, M. J. McLaughlin, Transport of silver nanoparticles in saturated columns of natural soils. Sci. Total Environ. 2013, 463–464, 120.
Transport of silver nanoparticles in saturated columns of natural soils.Crossref | GoogleScholarGoogle Scholar | 23792254PubMed |

[107]  W. P. Johnson, X. Li, S. Assemi, Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Adv. Water Resour. 2007, 30, 1432.
Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition.Crossref | GoogleScholarGoogle Scholar |

[108]  W. Sang, V. L. Morales, W. Zhang, C. R. Stoof, B. Gao, A. L. Schatz, Y. Zhang, T. S. Steenhuis, Quantification of colloid retention and release by straining and energy minima in variably saturated porous media. Environ. Sci. Technol. 2013, 47, 8256.
| 1:CAS:528:DC%2BC3sXhtVWhurbE&md5=25a304b27ba171540a69f50b271005abCAS | 23805840PubMed |

[109]  I. Chowdhury, Y. Hong, R. J. Honda, S. L. Walker, Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate. J. Colloid Interface Sci. 2011, 360, 548.
Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1Cisr0%3D&md5=5bfa1c6e7f94d92cae69d52685216668CAS | 21640358PubMed |

[110]  J. Liu, S. Legros, G. Ma, J. G. Veinot, F. von der Kammer, T. Hofmann, Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles. Chemosphere 2012, 87, 918.
Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFyju70%3D&md5=b7a4d6adb1d7286d52cc21aaa04b4ecaCAS | 22349061PubMed |

[111]  M. W. Hahn, D. Abadzic, C. R. O’Melia, Aquasols: on the role of secondary minima. Environ. Sci. Technol. 2004, 38, 5915.
Aquasols: on the role of secondary minima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Wjtbc%3D&md5=57f5aa8d0c1ec90def7683dd8b9a4461CAS | 15573589PubMed |

[112]  G. Chen, X. Liu, C. Su, Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Langmuir 2011, 27, 5393.
Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFartr4%3D&md5=2396c9e0920b71fff846ca2b3466d122CAS | 21446737PubMed |

[113]  N. Solovitch, J. Labille, J. Rose, P. Chaurand, D. Borschneck, M. R. Wiesner, J. Y. Bottero, Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ. Sci. Technol. 2010, 44, 4897.
Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFKmu7s%3D&md5=68cabfeefc057a85e792f1f617c1d691CAS | 20524647PubMed |

[114]  Z. Li, E. Sahle-Demessie, A. A. Hassan, G. A. Sorial, Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Water Res. 2011, 45, 4409.
Transport and deposition of CeO2 nanoparticles in water-saturated porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1altLw%3D&md5=1574ed0784294b43529d8c70926faa84CAS | 21708395PubMed |

[115]  T. Ben-Moshe, I. Dror, B. Berkowitz, Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 2010, 81, 387.
Transport of metal oxide nanoparticles in saturated porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGjsLrJ&md5=fcc164d1a26fca8b1ada7756b6a4efc4CAS | 20678789PubMed |

[116]  T. Rahman, J. George, H. J. Shipley, Transport of aluminium oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration. Sci. Total Environ. 2013, 463–464, 565.
Transport of aluminium oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.Crossref | GoogleScholarGoogle Scholar | 23835066PubMed |

[117]  M. W. Hahn, C. R. O’Melia, Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Environ. Sci. Technol. 2004, 38, 210.
Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOmtrw%3D&md5=64d89ac9910a2e1354a63a36a3356875CAS | 14740738PubMed |

[118]  C. Shen, B. Li, Y. Huang, Y. Jin, Kinetics of coupled primary- and secondary-minimum deposition of colloids under unfavorable chemical conditions. Environ. Sci. Technol. 2007, 41, 6976.
Kinetics of coupled primary- and secondary-minimum deposition of colloids under unfavorable chemical conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSgs7nL&md5=d03fe001883db077c9ea0042dcc03b8eCAS | 17993137PubMed |

[119]  F. He, M. Zhang, T. Qian, D. Zhao, Transport of carboxymethylcellulose-stabilized iron nanoparticles in porous media: column experiments and modeling. J. Colloid Interface Sci. 2009, 334, 96.
Transport of carboxymethylcellulose-stabilized iron nanoparticles in porous media: column experiments and modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1egtbY%3D&md5=f38896c934c580070e80d897ea1250aaCAS | 19383562PubMed |

[120]  N. Tufenkji, M. Elimelech, Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. Langmuir 2005, 21, 841.
Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1altA%3D%3D&md5=26786b9a73d1fb7e1da6c91f023e8c06CAS | 15667159PubMed |

[121]  M. B. Seymour, G. Chen, C. Su, Y. Li, Transport and retention of colloids in porous media: does shape really matter? Environ. Sci. Technol. 2013, 47, 8391.
| 1:CAS:528:DC%2BC3sXhtVegtbrL&md5=55a14b92afe338b06542f8803a37e23bCAS | 23822811PubMed |

[122]  L. Cai, M. Tong, H. Ma, H. Kim, Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media. Environ. Sci. Technol. 2013, 47, 5703.
Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVeqsbc%3D&md5=84f332f2f874c05186f7954d812c52eaCAS | 23662648PubMed |

[123]  F. Van Koetsem, T. T. Geremew, E. Wallaert, K. Verbeken, P. Van der Meeren, G. Du Laing, Fate of engineered nanomaterials in surface water: factors affecting interactions of Ag and CeO2 nanoparticles with (re)suspended sediments. Ecol. Eng. 2015, 80, 140.
Fate of engineered nanomaterials in surface water: factors affecting interactions of Ag and CeO2 nanoparticles with (re)suspended sediments.Crossref | GoogleScholarGoogle Scholar |

[124]  G. Cornelis, M. Doolette, C. Thomas, M. J. McLaughlin, J. K. Kirby, D. G. Beak, D. Chittleborough, Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci. Soc. Am. J. 2012, 76, 891.
Retention and dissolution of engineered silver nanoparticles in natural soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFejur0%3D&md5=16f7ffe020659da5237e08aac0ad1bc1CAS |

[125]  P. E. Buffet, C. Amiard-Triquet, A. Dybowska, C. Risso-de Faverney, M. Guibbolini, E. Valsami-Jones, C. Mouneyrac, Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. Ecotoxicol. Environ. Saf. 2012, 84, 191.
Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSgsbrF&md5=1a882f8074bd7bef857a34c4b00691e0CAS | 22858103PubMed |

[126]  G. Chen, X. Liu, C. Su, Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns. Environ. Sci. Technol. 2012, 46, 7142.
Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvV2ntb8%3D&md5=f6f216fd25b6a9b3e60ca8cf2246a1b9CAS | 22681399PubMed |

[127]  X. Jiang, M. Tong, R. Lu, H. Kim, Transport and deposition of ZnO nanoparticles in saturated porous media. Colloids Surf. A Physicochem. Eng. Asp. 2012, 401, 29.
Transport and deposition of ZnO nanoparticles in saturated porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFWgs7w%3D&md5=3f789355eb819e6ebfabae03f4e397d8CAS |

[128]  J. Fang, X. Q. Shan, B. Wen, J. M. Lin, G. Owens, Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneoeus soil columns. Environ. Pollut. 2009, 157, 1101.
Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneoeus soil columns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1eltb8%3D&md5=05cd62761092c4e884d13fb627c03868CAS | 19081659PubMed |

[129]  A. A. Rowden, C. F. Jago, S. E. Jones, Influence of benthic macrofauna on the geotechnical and geophysical properties of surficial sediment, North Sea. Cont. Shelf Res. 1998, 18, 1347.
Influence of benthic macrofauna on the geotechnical and geophysical properties of surficial sediment, North Sea.Crossref | GoogleScholarGoogle Scholar |

[130]  B. P. Jackson, D. Bugge, J. F. Ranville, C. Y. Chen, Bioavailability, toxicity, and bioaccumulation of quantum-dot nanoparticles to the amphipod Leptocheirus plumulosus. Environ. Sci. Technol. 2012, 46, 5550.
Bioavailability, toxicity, and bioaccumulation of quantum-dot nanoparticles to the amphipod Leptocheirus plumulosus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvV2jsro%3D&md5=c5cc98e712d48f4ebf133b60a7a2de6fCAS | 22471552PubMed |

[131]  C. M. Zhao, W. X. Wang, Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ. Sci. Technol. 2010, 44, 7699.
Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChs77P&md5=e3189a7c8efa52af83cdf8aa84fca7caCAS | 20831153PubMed |

[132]  S. Li, L. K. Wallis, S. A. Diamond, H. Ma, D. J. Hoff, Species sensitivity and dependence on exposure conditions impacting the phototoxicity of TiO2 nanoparticles to benthic organisms. Environ. Toxicol. Chem. 2014, 33, 1563.
Species sensitivity and dependence on exposure conditions impacting the phototoxicity of TiO2 nanoparticles to benthic organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvVWksL8%3D&md5=e0b2f0187124e4e46727c4c1e209e0b9CAS | 24846372PubMed |

[133]  C. Coutris, E. J. Joner, D. H. Oughton, Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Sci. Total Environ. 2012, 420, 327.
Aging and soil organic matter content affect the fate of silver nanoparticles in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1GgtLg%3D&md5=d0046707470bef7edfa28bf12ebcb373CAS | 22326137PubMed |

[134]  A. R. Petosa, S. J. Brennan, F. Rajput, N. Tufenkji, Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. Water Res. 2012, 46, 1273.
Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGnur0%3D&md5=b8903172fff5cfbacf2d13d39f93cd26CAS | 22236555PubMed |

[135]  A. M. El Badawy, A. A. Hassan, K. G. Scheckel, M. T. Suidan, T. M. Tolaymat, Key factors controlling the transport of silver nanoparticles in porous media. Environ. Sci. Technol. 2013, 47, 4039.
Key factors controlling the transport of silver nanoparticles in porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFSkurs%3D&md5=2338d61c492ab07a9cd6bf63d7f55647CAS | 23521179PubMed |

[136]  H.-J. Kim, T. Phenrat, R. D. Tilton, G. V. Lowry, Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ. Sci. Technol. 2009, 43, 3824.
Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslOksrs%3D&md5=f60b9fbe4bab06fe1ce50fcdc1cfe280CAS | 19544894PubMed |

[137]  I. Blinova, J. Niskanen, P. Kajankari, L. Kanarbik, A. Kakinen, H. Tenhu, O. P. Penttinen, A. Kahru, Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ. Sci. Pollut. Res. Int. 2013, 20, 3456.
Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVWqtbo%3D&md5=01d316212d9304301434f603e25de0b8CAS | 23143296PubMed |

[138]  P. E. Buffet, J. F. Pan, L. Poirier, C. Amiard-Triquet, J. C. Amiard, P. Gaudin, C. R. Favenerney, M. Guibbolini, D. Gilliland, E. Valsami-Jones, C. Mouneyrac, Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food. Ecotoxicol. Environ. Saf. 2013, 89, 117.
Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVymur%2FL&md5=b75a5c0f0331440c1a3c4223a308f86aCAS | 23260182PubMed |

[139]  W. S. Cho, M. Cho, J. Jeong, M. Choi, H. Y. Cho, B. S. Han, S. H. Kim, H. O. Kim, Y. T. Lim, B. H. Chung, J. Jeong, Acute toxicity and pharmacokinetics of 13-nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 2009, 236, 16.
Acute toxicity and pharmacokinetics of 13-nm-sized PEG-coated gold nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFKqtL4%3D&md5=019049011b14166fa58099d94193f170CAS | 19162059PubMed |

[140]  A. L. Dale, G. V. Lowry, E. A. Casman, Modeling nanosilver transformations in freshwater sediments. Environ. Sci. Technol. 2013, 47, 12920.
Modeling nanosilver transformations in freshwater sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CmsrnN&md5=566c8fbc3d0050700c33e854ff53422cCAS | 24147627PubMed |

[141]  A. R. Whitley, C. Levard, E. Oostveen, P. M. Bertsch, C. J. Matocha, F. von der Kammer, F. von der Kammer, J. M. Unrine, Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment. Environ. Pollut. 2013, 182, 141.
Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFensb7J&md5=4c7a626222acbba2d887fe73efc48fe8CAS | 23911623PubMed |

[142]  M. J. van der Ploeg, R. D. Handy, P. L. Waalewijn-Kool, J. H. van den Berg, Z. E. Herrera Rivera, J. Bovenschen, B. Molleman, J. M. Baveco, P. Tromp, R. J. B. Peters, G. F. Koopmans, I. M. C. M. Rietjens, N. W. van den Brink, Effects of silver nanoparticles (NM-300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil. Environ. Toxicol. Chem. 2014, 33, 743.
Effects of silver nanoparticles (NM-300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltF2qt7w%3D&md5=18d0a52b035178e69f529e69dd07c1d4CAS | 24318461PubMed |

[143]  B. Kim, C. S. Park, M. Murayama, M. F. Hochella, Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ. Sci. Technol. 2010, 44, 7509.
Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGhtr%2FL&md5=9b3a0b64ef3c5699ea2611543aece120CAS | 20839838PubMed |

[144]  B. J. Shaw, R. D. Handy, Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ. Int. 2011, 37, 1083.
Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVWnurg%3D&md5=c3e286159e947ce3bb3f43c1cb3db344CAS | 21474182PubMed |

[145]  V. Matranga, I. Corsi, Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Mar. Environ. Res. 2012, 76, 32.
Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvV2iurc%3D&md5=5df0febb2e0da5f23598edced6b70bdcCAS | 22391237PubMed |

[146]  S. K. Hanna, R. J. Miller, D. Zhou, A. A. Keller, H. S. Lenihan, Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod. Aquat. Toxicol. 2013, 142–143, 441.
Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod.Crossref | GoogleScholarGoogle Scholar | 24121101PubMed |

[147]  L. Yin, Y. Cheng, B. Espinasse, B. P. Colman, M. Auffan, M. Wiesner, J. Rose, J. Liu, E. S. Bernhardt, More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ. Sci. Technol. 2011, 45, 2360.
More than the ions: the effects of silver nanoparticles on Lolium multiflorum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitlamtLk%3D&md5=af1a562d6fb98c32c56ff9a94757426dCAS | 21341685PubMed |

[148]  J. Lv, S. Zhang, L. Luo, W. Han, J. Zhang, K. Yang, P. Christie, Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environ. Sci. Technol. 2012, 46, 7215.
Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslGrurY%3D&md5=309d688676852cd9731e607dcd9bed5eCAS | 22651907PubMed |

[149]  B. C. Reinsch, B. Forsberg, R. L. Penn, C. S. Kim, G. V. Lowry, Chemical transformations during aging of zero-valent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ. Sci. Technol. 2010, 44, 3455.
Chemical transformations during aging of zero-valent iron nanoparticles in the presence of common groundwater dissolved constituents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVKlu7w%3D&md5=151711488c5026e52b3bd7c3139c84bfCAS | 20380376PubMed |

[150]  E. J. Park, J. Yi, Y. Kim, K. Choi, K. Park, Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. In Vitro 2010, 24, 872.
Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVSgs7o%3D&md5=d166d1a894cfe205072eeb04f42af084CAS | 19969064PubMed |

[151]  T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J. I. Yeh, J. I. Zink, A. E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121.
Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFygt7fN&md5=8a03664436aaaa13dfdf1ea8283936c7CAS | 19206459PubMed |

[152]  N. Akaighe, R. I. Maccuspie, D. A. Navarro, D. S. Aga, S. Banerjee, M. Sohn, V. K. Sharma, Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ. Sci. Technol. 2011, 45, 3895.
Humic acid-induced silver nanoparticle formation under environmentally relevant conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFSrtbg%3D&md5=dffae40bf5472e5742c29d9a173c2640CAS | 21456573PubMed |

[153]  J. Liu, R. H. Hurt, Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010, 44, 2169.
Ion release kinetics and particle persistence in aqueous nano-silver colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Wqsrc%3D&md5=b78dd82504e54b5ce40a9570dd73c1cbCAS | 20175529PubMed |

[154]  E. H. Jones, C. Su, Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials. Water Res. 2012, 46, 2445.
Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFyqt7c%3D&md5=beec9fba38c029a504ab3cd9e1fd51efCAS | 22386886PubMed |

[155]  S. R. Deshiikan, E. Eschenazi, K. D. Papadopoulos, Transport of colloids through porous beds in the presence of natural organic matter. Colloids Surf. A Physicochem. Eng. Asp. 1998, 145, 93.
Transport of colloids through porous beds in the presence of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1Krs70%3D&md5=46c84796596f15448c9be279a2058093CAS |

[156]  A. Amirbahman, T. M. Olson, The role of surface conformations in the deposition kinetics of humic matter-coated colloids in porous media. Colloid Surf. A 1995, 95, 249.
The role of surface conformations in the deposition kinetics of humic matter-coated colloids in porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFertrg%3D&md5=42f852b8b000f112b384f925ff4ef38cCAS |

[157]  E. M. Hotze, T. Phenrat, G. V. Lowry, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 2010, 39, 1909.
Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKlu7zI&md5=ff0da311c733a0a6e7fd169e45ae2f10CAS | 21284288PubMed |

[158]  A. M. Badawy, T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, T. M. Tolaymat, Impact of environmental conditions (pH, ionic strength and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 2010, 44, 1260.
Impact of environmental conditions (pH, ionic strength and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions.Crossref | GoogleScholarGoogle Scholar | 20099802PubMed |

[159]  J. M. Pettibone, D. M. Cwiertny, M. Scherer, V. H. Grassian, Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 2008, 24, 6659.
Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGqt70%3D&md5=0aacf492bbaa80cf21af9617409db7e0CAS | 18537279PubMed |

[160]  B. Espinasse, E. M. Hotze, M. R. Wiesner, Transport and retention of colloidal aggregates of C60in porous media: effects of organic macromolecules, ionic composition, and preparation method. Environ. Sci. Technol. 2007, 41, 7396.
Transport and retention of colloidal aggregates of C60in porous media: effects of organic macromolecules, ionic composition, and preparation method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFagtbzI&md5=f3a81c68b9ad740b8b2779a51e38812cCAS | 18044517PubMed |

[161]  W. J. Foster, R. J. Twitchett, Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nat. Geosci. 2014, 7, 233.
Functional diversity of marine ecosystems after the Late Permian mass extinction event.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFantL8%3D&md5=4329ad644615b948d3e5f15f46deceecCAS |

[162]  M. Solan, B. J. Cardinale, A. L. Downing, K. A. Engelhardt, J. L. Ruesink, D. S. Srivastava, Extinction and ecosystem function in the marine benthos. Science 2004, 306, 1177.
Extinction and ecosystem function in the marine benthos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsF2kt74%3D&md5=662462423b6bd0f9f0d4bf189b34b2ecCAS | 15539601PubMed |

[163]  A. M. Lohrer, S. F. Thrush, M. M. Gibbs, Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 2004, 431, 1092.
Bioturbators enhance ecosystem function through complex biogeochemical interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFGntrs%3D&md5=fbd555917a99a9c22651f64915d09893CAS | 15470385PubMed |

[164]  P. V. Snelgrove, The importance of marine sediment biodiversity in ecosystem processes. Ambio 1997, 26, 578.

[165]  M. Gyllström, L.-A. Hansson, Dormancy in freshwater zooplankton: induction, termination and the importance of benthic–pelagic coupling. Aquat. Sci. 2004, 66, 274.
Dormancy in freshwater zooplankton: induction, termination and the importance of benthic–pelagic coupling.Crossref | GoogleScholarGoogle Scholar |

[166]  P. S. Meadows, A. Meadows, J. M. H. Murray, Biological modifiers of marine benthic seascapes: their role as ecosystem engineers. Geomorphology 2012, 157–158, 31.
Biological modifiers of marine benthic seascapes: their role as ecosystem engineers.Crossref | GoogleScholarGoogle Scholar |

[167]  F. J. Meysman, J. J. Middelburg, C. H. Heip, Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol. Evol. 2006, 21, 688.
Bioturbation: a fresh look at Darwin’s last idea.Crossref | GoogleScholarGoogle Scholar | 16901581PubMed |

[168]  M. A. Palmer, A. P. Covich, S. A. M. Lake, P. Biro, J. J. Brooks, J. Cole, C. Dahm, J. Gibert, W. Goedkoop, K. Martens, J. Verhoeven, W. J. van de Bund, Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes. Bioscience 2000, 50, 1062.
Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes.Crossref | GoogleScholarGoogle Scholar |

[169]  T. J. Baker, C. R. Tyler, T. S. Galloway, Impacts of metal and metal oxide nanoparticles on marine organisms. Environ. Pollut. 2014, 186, 257.
Impacts of metal and metal oxide nanoparticles on marine organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFGiu7nF&md5=95c414490222997de74ddfa4631e367fCAS | 24359692PubMed |

[170]  J. L. Ferry, P. Craig, C. Hexel, P. Sisco, R. Frey, P. L. Pennington, M. H. Fulton, I. G. Scott, A. W. Decho, S. Kashiwada, C. J. Murphy, T. J. Shaw, Transfer of gold nanoparticles from the water column to the estuarine food web. Nat. Nanotechnol. 2009, 4, 441.
Transfer of gold nanoparticles from the water column to the estuarine food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFWht74%3D&md5=a5469f221521c31c6347542337c7e258CAS | 19581897PubMed |

[171]  R. N. Lerner, Q. Lu, H. Zeng, Y. Liu, The effects of biofilm on the transport of stabilized zero-valent iron nanoparticles in saturated porous media. Water Res. 2012, 46, 975.
The effects of biofilm on the transport of stabilized zero-valent iron nanoparticles in saturated porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGnu7g%3D&md5=43f5d11b887df8e15afecbcdfdb4f862CAS | 22209258PubMed |

[172]  S. U. Gerbersdorf, S. Wieprecht, Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. Geobiology 2015, 13, 68.
Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFehtr0%3D&md5=ffaba5c94124d6418e3a309fa3828df2CAS | 25345370PubMed |

[173]  C. Gambardella, L. Gallus, A. M. Gatti, M. Faimali, S. Carbone, L. V. Antisari, C. Falugi, S. Ferrando, Toxicity and transfer of metal oxide nanoparticles from microalgae to sea urchin larvae. Chem. Ecol. 2014, 30, 308.
Toxicity and transfer of metal oxide nanoparticles from microalgae to sea urchin larvae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvVOntA%3D%3D&md5=51c5f274e8d849f74f947e1e3e37d98dCAS |

[174]  K. J. Kulacki, B. J. Cardinale, A. A. Keller, R. Bier, H. Dickson, How do stream organisms respond to, and influence, the concentration of titanium dioxide nanoparticles? A mesocosm study with algae and herbivores. Environ. Toxicol. Chem. 2012, 31, 2414.
How do stream organisms respond to, and influence, the concentration of titanium dioxide nanoparticles? A mesocosm study with algae and herbivores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Kgs7jP&md5=a24f4f49478b6088f2943f8482103752CAS | 22847763PubMed |