Towards a revised climatology of summertime dimethylsulfide concentrations and sea–air fluxes in the Southern Ocean
Tereza Jarníková A and Philippe D. Tortell A B CA Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
B Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
C Corresponding author: ptortell@eos.ubc.ca
Environmental Chemistry 13(2) 364-378 https://doi.org/10.1071/EN14272
Submitted: 17 December 2014 Accepted: 7 October 2015 Published: 7 January 2016
Environmental context. The trace gas dimethylsulfide (DMS) is emitted from surface ocean waters to the overlying atmosphere, where it forms aerosols that promote cloud formation and influence Earth’s climate. We present an updated climatology of DMS emissions from the vast Southern Ocean, demonstrating how the inclusion of new data yields higher regional sources compared with previously derived values. Our work provides an important step towards better quantifying the oceanic emissions of an important climate-active gas.
Abstract. The Southern Ocean is a dominant source of the climate-active gas dimethylsulfide (DMS) to the atmosphere. Despite significant improvements in data coverage over the past decade, the most recent global DMS climatology does not include a growing number of high-resolution surface measurements in Southern Ocean waters. Here, we incorporate these high resolution data (~700 000 measurements) into an updated Southern Ocean climatology of summertime DMS concentrations and sea–air fluxes. Owing to sparse monthly data coverage, we derive a single summertime climatology based on December through February means. DMS frequency distributions and oceanographic properties (mixed-layer depth and chlorophyll-a) show good general coherence across these months, providing justification for the use of summertime mean values. The revised climatology shows notable differences with the existing global climatology. In particular, we find increased DMS concentrations and sea–air fluxes south of the Polar Frontal zone (between ~60 and 70°S), and increased sea–air fluxes in mid-latitude waters (40–50°S). These changes are attributable to both the inclusion of new data and the use of region-specific parameters (e.g. data cut-off thresholds and interpolation radius) in our objective analysis. DMS concentrations in the Southern Ocean exhibit weak though statistically significant correlations with several oceanographic variables, including ice cover, mixed-layer depth and chlorophyll-a, but no apparent relationship with satellite-derived measures of phytoplankton photophysiology or taxonomic group abundance. Our analysis highlights the importance of using regional parameters in constructing climatological DMS fields, and identifies regions where additional observations are most needed.
References
[1] R. Simó, Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol. Evol. 2001, 16, 287.| Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links.Crossref | GoogleScholarGoogle Scholar | 11369106PubMed |
[2] O. Boucher, C. Moulin, S. Belviso, O. Aumont, L. Bopp, E. Cosme, R. von Kuhlmann, M. G. Lawrence, M. Pham, M. S. Reddy, J. Sciare, C. Venkataraman, DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation. Atmos. Chem. Phys. 2003, 3, 49.
| DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Snsb0%3D&md5=b1e028c0dd9cbdda215417705f71b519CAS |
[3] M. A. Thomas, P. Suntharalingam, L. Pozzoli, S. Rast, A. Devasthale, S. Kloster, J. Feichter, T. M. Lenton, Quantification of DMS aerosol–cloud–climate interactions using the ECHAM5-HAMMOZ model in a current climate scenario. Atmos. Chem. Phys. 2010, 10, 7425.
| Quantification of DMS aerosol–cloud–climate interactions using the ECHAM5-HAMMOZ model in a current climate scenario.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSkt7nM&md5=d1226a6afac036447c9c5ec04b952736CAS |
[4] J. Stefels, Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J. Sea Res. 2000, 43, 183.
| Physiological aspects of the production and conversion of DMSP in marine algae and higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wrtb4%3D&md5=469bb7bdecf693cb9625a3b2f0733d0eCAS |
[5] R. Charlson, J. Lovelock, M. Andreae, S. Warren, Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 1987, 326, 655.
| Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgsb8%3D&md5=8a4e47b6c58aead2ad82d0f3209a72f9CAS |
[6] P. K. Quinn, T. S. Bates, The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 2011, 480, 51.
| The case against climate regulation via oceanic phytoplankton sulphur emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGku73O&md5=a6a9f1e16b620d07e88e24248c16b778CAS | 22129724PubMed |
[7] A. J. Kettle, M. O. Andreae, D. Amouroux, T. W. Andreae, T. S. Bates, H. Berresheim, H. Bingemer, R. Boniforti, M. A. J. Curran, G. R. DiTullio, G. Helas, G. B. Jones, M. D. Keller, R. P. Kiene, C. Leck, M. Levasseur, G. Malin, M. Maspero, P. Matrai, A. R. McTaggart, N. Mihalopoulos, B. C. Nguyen, A. Novo, J. P. Putaud, S. Rapsomanikis, G. Roberts, G. Schebeske, S. Sharma, R. Simó, R. Staubes, S. Turner, G. Uhe, A global database of sea-surface dimethylsulfide (DMS) measurements and a procedure to predict sea-surface DMS as a function of latitude, longitude, and month. Global Biogeochem. Cycles 1999, 13, 399.
| A global database of sea-surface dimethylsulfide (DMS) measurements and a procedure to predict sea-surface DMS as a function of latitude, longitude, and month.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOrurw%3D&md5=8b1024738e47e1a06e193660aa6cbc8dCAS |
[8] A. J. Gabric, B. Qu, P. Matrai, A. Hirst, Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions. Global Biogeochem. Cycles 2004, 18, GB2014.
[9] A. F. Vézina, Ecosystem modelling of the cycling of marine dimethylsulfide: a review of current approaches and of the potential for extrapolation to global scales. Can. J. Fish. Aquat. Sci. 2004, 61, 845.
| Ecosystem modelling of the cycling of marine dimethylsulfide: a review of current approaches and of the potential for extrapolation to global scales.Crossref | GoogleScholarGoogle Scholar |
[10] P. Cameron-Smith, S. Elliott, M. Maltrud, D. Erickson, O. Wingenter, Changes in dimethyl sulfide oceanic distribution due to climate change. Geophys. Res. Lett. 2011, 38, L07704.
| Changes in dimethyl sulfide oceanic distribution due to climate change.Crossref | GoogleScholarGoogle Scholar |
[11] A. Lana, T. G. Bell, R. Simó, S. M. Vallina, J. Ballabrera-Poy, A. J. Kettle, J. Dachs, L. Bopp, E. S. Saltzman, J. Stefels, J. E. Johnson, P. S. Liss, An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean. Global Biogeochem. Cycles 2011, 25, GB1004.
| An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean.Crossref | GoogleScholarGoogle Scholar |
[12] V. Schoemann, S. Becquevort, J. Stefels, V. Rousseau, C. Lancelot, Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J. Sea Res. 2005, 53, 43.
| Phaeocystis blooms in the global ocean and their controlling mechanisms: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFSh&md5=9605fb6058f5cb66f780a5a9a428e370CAS |
[13] P. Boyd, P. J. Harrison, Phytoplankton dynamics in the NE Subarctic Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 1999, 46, 2405.
| Phytoplankton dynamics in the NE Subarctic Pacific.Crossref | GoogleScholarGoogle Scholar |
[14] P. W. Boyd, Environmental factors controlling phytoplankton processes in the Southern Ocean. J. Phycol. 2002, 38, 844.
| Environmental factors controlling phytoplankton processes in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |
[15] W. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman, An antioxidant function for DMSP and DMS in marine algae. Nature 2002, 418, 317.
| An antioxidant function for DMSP and DMS in marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlGms7k%3D&md5=9739188bf4b6c7f9a6c07626d8632cb2CAS | 12124622PubMed |
[16] D. Lubin, J. Frederick, C. Rocky Booth, T. Lucas, D. Neuschuler, Measurements of enhanced springtime ultraviolet radiation at Palmer Station, Antarctica. Geophys. Res. Lett. 1989, 16, 783.
| Measurements of enhanced springtime ultraviolet radiation at Palmer Station, Antarctica.Crossref | GoogleScholarGoogle Scholar |
[17] K. R. Arrigo, K. Lowry, G. van Dijken, Dynamics of sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 71, 5.
| Dynamics of sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar |
[18] P. D. Tortell, Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry. Limnol. Oceanogr. Methods 2005, 3, 24.
| Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yltLzJ&md5=8515e5694d5f596af6aa6f8cb962afbcCAS |
[19] E. S. Saltzman, W. J. De Bruyn, M. J. Lawler, C. A. Marandino, C. A. McCormick, A chemical ionization mass spectrometer for continuous underway shipboard analysis of dimethylsulfide in near-surface seawater. Ocean Science 2009, 5, 537.
| A chemical ionization mass spectrometer for continuous underway shipboard analysis of dimethylsulfide in near-surface seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1agurzL&md5=6d4b7b869fbba022026e299b525e6598CAS |
[20] P. D. Tortell, C. Guégen, M. C. Long, C. D. Payne, P. Lee, G. R. DiTullio, Spatial variability and temporal dynamics of surface water pCO2, ΔO2/Ar and dimethylsulfide in the Ross Sea, Antarctica. Deep Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 241.
| Spatial variability and temporal dynamics of surface water pCO2, ΔO2/Ar and dimethylsulfide in the Ross Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1eisLg%3D&md5=01e453b3b00a94d9214ffef91ce8b4e3CAS |
[21] P. D. Tortell, M. C. Long, C. D. Payne, A.-C. Alderkamp, P. Dutrieux, K. Arrigo, Spatial distribution of pCO2, ΔO2/Ar and dimethylsulfide (DMS) in polynya waters and the sea-ice zone of the Amundsen Sea, Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 71, 77.
[22] P. D. Tortell, M. C. Long, Spatial and temporal variability of biogenic gases during the Southern Ocean spring bloom. Geophys. Res. Lett. 2009, 36, L01603.
| Spatial and temporal variability of biogenic gases during the Southern Ocean spring bloom.Crossref | GoogleScholarGoogle Scholar |
[23] E. C. Asher, J. W. H. Dacey, T. Jarníková, P. D. Tortell, Measurement of DMS, DMSO, and DMSP in natural waters by automated sequential chemical analysis. Limnol. Oceanogr. Methods 2015, 36, L01603.
[24] R. Johnson, P. G. Strutton, S. W. Wright, A. McMinn, K. M. Meiners, Three improved satellite chlorophyll algorithms for the Southern Ocean. J. Geophys. Res. – Oceans 2013, 118, 3694.
| Three improved satellite chlorophyll algorithms for the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlChtr7K&md5=05947e3c3b3f2f5ac66b6ce19a74b0a1CAS |
[25] C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, D. Iudicone, Mixed-layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. – Oceans 2004, 109, C12003.
| Mixed-layer depth over the global ocean: an examination of profile data and a profile-based climatology.Crossref | GoogleScholarGoogle Scholar |
[26] R. P. Kiene, D. Slezak, Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling. Limnol. Oceanogr. Methods 2006, 4, 80.
| Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlWnt70%3D&md5=3be8a7772e588484be5f1fe6005e96f5CAS |
[27] J. Stefels, L. Dijkhuizen, Characteristics of DMSP lyase in Phaeocystis sp. (Prymnesiophyceae). Mar. Ecol. Prog. Ser. 1996, 131, 307.
| Characteristics of DMSP lyase in Phaeocystis sp. (Prymnesiophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislGksrg%3D&md5=af52069b6c920c1cab8ab86963521046CAS |
[28] G. R. DiTullio, W. O. Smith, Spatial patterns in phytoplankton biomass and pigment distributions in the Ross Sea. J. Geophys. Res. – Oceans 1996, 101, 18 467.
| Spatial patterns in phytoplankton biomass and pigment distributions in the Ross Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVOgurc%3D&md5=2772477744a128bee0e8d19a612d6d62CAS |
[29] A. R. Longhurst, Ecological Geography of the Sea 2007 (Elsevier Inc.: London).
[30] International Hydrographic Bureau, Limits of Seas and Oceans. Special Publication 23 1987 (International Hydrographic Bureau: Monaco).
[31] S. L. Barnes, A technique for maximizing details in numerical weather map analysis. J. Appl. Meteorol. 1964, 3, 396.
| A technique for maximizing details in numerical weather map analysis.Crossref | GoogleScholarGoogle Scholar |
[32] R. A. Locarnini, A. Mishonov, J. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, D. R. Johnson, World Ocean Atlas 2009, Vol. 1. Temperature 2009 (Ocean Climate Laboratory: Silver Spring, MD).
[33] P. D. Nightingale, G. Malin, C. S. Law, A. J. Watson, P. S. Liss, M. I. Liddicoat, J. Boutin, R. C. Upstill-Goddard, In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem. Cycles 2000, 14, 373.
| In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVGms7s%3D&md5=9e9b3d5c6aff817e3a57744f3a0b45c6CAS |
[34] E. S. Saltzman, D. B. King, K. Holmen, C. Leck, Experimental determination of the diffusion coefficient of dimethylsulfide in water. J. Geophys. Res. 1993, 98, 16 481.
| Experimental determination of the diffusion coefficient of dimethylsulfide in water.Crossref | GoogleScholarGoogle Scholar |
[35] B. Loose, W. R. McGillis, P. Schlosser, D. Perovich, T. Takahashi, Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments. Geophys. Res. Lett. 2009, 36, L05603.
| Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments.Crossref | GoogleScholarGoogle Scholar |
[36] M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, N. Mahowald, Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences 2009, 6, 779.
| Satellite-detected fluorescence reveals global physiology of ocean phytoplankton.Crossref | GoogleScholarGoogle Scholar |
[37] Y. Huot, B. A. Franz, M. Fradette, Estimating variability in the quantum yield of sun-induced chlorophyll fluorescence: a global analysis of oceanic waters. Remote Sens. Environ. 2013, 132, 238.
| Estimating variability in the quantum yield of sun-induced chlorophyll fluorescence: a global analysis of oceanic waters.Crossref | GoogleScholarGoogle Scholar |
[38] T. J. Browning, H. A. Bouman, C. M. Moore, Satellite-detected fluorescence: decoupling non-photochemical quenching from iron stress signals in the South Atlantic and Southern Ocean. Global Biogeochem. Cycles 2014, 28, 510.
| Satellite-detected fluorescence: decoupling non-photochemical quenching from iron stress signals in the South Atlantic and Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1Kmsb4%3D&md5=95b96bdbcae329438e313a687ae5071eCAS |
[39] Z. Ben Mustapha, S. Alvain, C. Jamet, H. Loisel, D. Dessailly, Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: application to the detection of phytoplankton groups in open ocean waters. Remote Sens. Environ. 2014, 146, 97.
| Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: application to the detection of phytoplankton groups in open ocean waters.Crossref | GoogleScholarGoogle Scholar |
[40] S. M. Vallina, R. Simo, Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 2007, 315, 506.
| Strong relationship between DMS and the solar radiation dose over the global surface ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFCisg%3D%3D&md5=513f054f564f0b00d8f36d391f2b3e28CAS | 17255509PubMed |
[41] A. Morel, Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res. – Oceans 1988, 93, 10 749.
| Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters).Crossref | GoogleScholarGoogle Scholar |
[42] E. C. Asher, A. Merzouk, P. D. Tortell, Fine-scale spatial and temporal variability of surface water dimethylsulfide (DMS) concentrations and sea–air fluxes in the NE Subarctic Pacific. Mar. Chem. 2011, 126, 63.
| Fine-scale spatial and temporal variability of surface water dimethylsulfide (DMS) concentrations and sea–air fluxes in the NE Subarctic Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVynsb7F&md5=2e16e648df5f698163e88db62b86d5adCAS |
[43] A. S. Mahajan, S. Madnavis, M. A. Thomas, L. Pozzoli, S. Gupta, S.-J. Royer, A. Saiz-Lopez, R. Simo, Quantifying the impacts of an updated global dimethyl sulfide climatology on cloud microphysics and aerosol radiative forcing. J. Geophys. Res.– Atmos. 2015, 120, 2524.
| Quantifying the impacts of an updated global dimethyl sulfide climatology on cloud microphysics and aerosol radiative forcing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsVentL0%3D&md5=e57c26b4c1e26698df252b2187fe051eCAS |
[44] S. Preunkert, M. Legrand, B. Jourdain, C. Moulin, S. Belviso, N. Kasamatsu, M. Fukuchi, T. Hirawake, Interannual variability of dimethylsulfide in air and seawater and its atmospheric oxidation by-products (methanesulfonate and sulfate) at Dumont d’Urville, coastal Antarctica (1999–2003). J. Geophys. Res. – Atmos. 2007, 112, D06306.
| Interannual variability of dimethylsulfide in air and seawater and its atmospheric oxidation by-products (methanesulfonate and sulfate) at Dumont d’Urville, coastal Antarctica (1999–2003).Crossref | GoogleScholarGoogle Scholar |
[45] R. H. Rhodes, N. A. N. Bertler, J. A. Baker, S. B. Sneed, H. Oertner, K. R. Arrigo, Sea ice variability and primary productivity in the Ross Sea, Antarctica, from methylsulphonate snow record. Geophys. Res. Lett. 2009, 36, L10704.
| Sea ice variability and primary productivity in the Ross Sea, Antarctica, from methylsulphonate snow record.Crossref | GoogleScholarGoogle Scholar |
[46] H. J. Zemmelink, L. Houghton, J. W. H. Dacey, A. P. Worby, P. S. Liss, Emission of dimethylsulfide from Weddell Sea leads. Geophys. Res. Lett. 2005, 32, L23610.
| Emission of dimethylsulfide from Weddell Sea leads.Crossref | GoogleScholarGoogle Scholar |
[47] R. Simó, J. Dachs, Global ocean emission of dimethylsulfide predicted from biogeophysical data. Global Biogeochem. Cycles 2002, 16, 26-1.
| Global ocean emission of dimethylsulfide predicted from biogeophysical data.Crossref | GoogleScholarGoogle Scholar |
[48] G. R. DiTullio, W. O. Smith, Relationship between dimethylsulfide and phytoplankton pigment concentrations in the Ross Sea, Antarctica. Deep Sea Res. Part I Oceanogr. Res. Pap. 1995, 42, 873.
| Relationship between dimethylsulfide and phytoplankton pigment concentrations in the Ross Sea, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFehsLo%3D&md5=73bc7edce602d17c8dfb207ef177ff36CAS |
[49] L. Bopp, O. Boucher, O. Aumont, S. Belviso, J.-L. Dufresne, M. Pham, P. Monfray, Will marine dimethylsulfide emissions amplify or alleviate global warming? A model study. Can. J. Fish. Aquat. Sci. 2004, 61, 826.
| Will marine dimethylsulfide emissions amplify or alleviate global warming? A model study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Sjs7Y%3D&md5=ee952f1ec2f0ad762cc4f3800c1d72b5CAS |
[50] G. M. Fragoso, W. O. Smith, Influence of hydrography on phytoplankton distribution in the Amundsen and Ross Seas, Antarctica. J. Mar. Syst. 2012, 89, 19.
| Influence of hydrography on phytoplankton distribution in the Amundsen and Ross Seas, Antarctica.Crossref | GoogleScholarGoogle Scholar |
[51] A.-C. Alderkamp, G. L. van Dijken, K. E. Lowry, T. L. Connelly, M. Lagerstrom, R. M. Sherrell, C. Haskins, E. Rogalsky, O. Schofield, S. E. Stammerjohn, P. L. Yager, K. R. Arrigo, Fe availability drives phytoplankton photosynthesis rates during spring bloom in the Amundsen Sea Polynya, Antarctica. Elementa 2015, 3, 43.
| Fe availability drives phytoplankton photosynthesis rates during spring bloom in the Amundsen Sea Polynya, Antarctica.Crossref | GoogleScholarGoogle Scholar |
[52] A.-C. Alderkamp, M. M. Mills, G. L. van Dijken, P. Laan, C.-E. Thuroczy, L. J. A. Gerringa, H. J. W. de Baar, C. D. Payne, R. J. W. Visser, A. G. J. Buma, K. R. Arrigo, Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): phytoplankton characteristics and productivity. Deep Sea Res. Part II Top. Stud. Oceanogr. 2012, 71, 32.
| Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): phytoplankton characteristics and productivity.Crossref | GoogleScholarGoogle Scholar |
[53] K. R. Arrigo, G. L. van Dijken, Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J. Geophys. Res. – Oceans 2003, 108, 3271.
| Phytoplankton dynamics within 37 Antarctic coastal polynya systems.Crossref | GoogleScholarGoogle Scholar |
[54] R. K. Laubscher, R. Perissinotto, C. D. McQuaid, Phytoplankton production and biomass at frontal zones in the Atlantic sector of the Southern Ocean. Polar Biol. 1993, 13, 471.
| Phytoplankton production and biomass at frontal zones in the Atlantic sector of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |
[55] S. Sokolov, Chlorophyll blooms in the Antarctic Zone south of Australia and New Zealand in reference to the Antarctic Circumpolar Current fronts and sea ice forcing. J. Geophys. Res. – Oceans 2008, 113, C03022.
[56] R. P. Kiene, D. J. Kieber, D. Slezak, D. A. Toole, D. A. del Valle, J. Bisgrove, J. Brinkley, A. Rellinger, Distribution and cycling of dimethylsulfide, dimethylsulfoniopropionate, and dimethylsulfoxide during spring and early summer in the Southern Ocean south of New Zealand. Aquat. Sci. 2007, 69, 305.
| Distribution and cycling of dimethylsulfide, dimethylsulfoniopropionate, and dimethylsulfoxide during spring and early summer in the Southern Ocean south of New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ajtrvK&md5=000967f46b0118c49f36626b3af31276CAS |
[57] T. Takahashi, C. Sweeney, S. C. Sutherland, D. W. Chipman, J. Goddard, S. I. Rubin, Method of underway pCO2 measurements in surface waters and the atmosphere during the Aesops expeditions, 1996–1998 in the Pacific Sector of the Southern Ocean and the Ross Sea 2000 (US Joint Global Ocean Flux Study Data Center, Woods Hole Oceanographic Institution: Woods Hole, MA).
[58] K. R. Arrigo, D. Worthen, A. Schnell, M. P. Lizotte, Primary production in Southern Ocean waters. J. Geophys. Res. – Oceans 1998, 103, 15 587.
| Primary production in Southern Ocean waters.Crossref | GoogleScholarGoogle Scholar |
[59] A. H. Orsi, T. Whitworth, W. D. Nowlin, On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I Oceanogr. Res. Pap. 1995, 42, 641.
| On the meridional extent and fronts of the Antarctic Circumpolar Current.Crossref | GoogleScholarGoogle Scholar |