Hydrocarbons in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean)
Catherine Guigue A D , Lionel Bigot B , Jean Turquet C , Marc Tedetti A , Nicolas Ferretto A , Madeleine Goutx A and Pascale Cuet BA Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, F-13288, Marseille, Cedex 09, France.
B UMR 9220 ENTROPIE, LabEx CORAIL, BP 7151, Université de La Réunion, 15, Avenue René-Cassin, F-97715 Saint-Denis Messag, Cedex 9, La Réunion, France.
C Agence pour la Recherche et la Valorisation Marines (ARVAM), CYROI, La Technopole, 2, Rue Maxime Rivière, F-97490 Sainte Clotilde, La Réunion, France.
D Corresponding author. Email: catherine.guigue@mio.osupytheas.fr
Environmental Chemistry 12(3) 350-365 https://doi.org/10.1071/EN14194
Submitted: 20 September 2014 Accepted: 18 January 2015 Published: 20 April 2015
Environmental context. Hydrocarbons are among the most widespread and harmful pollutants found in the aquatic media. Although they have been investigated in various temperate coastal environments, their dynamics in coral reef tropical ecosystems, which are under increasing human pressure, remain poorly understood. It was found that hydrocarbons had moderate to high concentrations, multiple origins (biogenic and anthropogenic) and could be used to track inland intrusions in fore reef waters of the eutrophicated La Saline reef ecosystem (La Réunion Island, Indian Ocean).
Abstract. The La Saline fringing reef, which is the most important coral reef complex of La Réunion Island, (south-western Indian Ocean), is subjected to anthropogenic pressures through river and groundwater inputs. Salinity and biogeochemical parameters (silicates, nitrates, dissolved organic carbon, chlorophyll-a), as well as aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analysed in particulate and dissolved material from groundwaters, rivers, harbour, back reef, fore reef and oceanic waters in the La Saline reef area during the rainy season (February–March 2012). Particulate and dissolved AH concentration ranges were 0.07–144 and 0.06–0.58 µg L–1 respectively. Particulate and dissolved PAH concentrations ranges were 4.3–326 and 28–350 ng L–1 respectively. AHs, dominated by nC15, nC17, nC18 compounds or nC26, nC27, nC29, nC31 compounds, were mainly of biogenic origin (phytoplankton, bacteria, higher-plant debris) although some anthropogenic (petroleum inputs) signatures were recorded in the dissolved phase from the harbour and fore reef areas. PAHs, dominated by two- to three-ring compounds and their alkylated homologues, reflected unburned petroleum inputs, but probably also biogenic sources. From the distribution of salinity, biogeochemical parameters and hydrocarbons, we found that inland waters flowed mainly in the surface and in the southern part of reef waters and that particulate PAHs allowed tracking these inland water intrusions in fore reef waters. Finally, this pilot study highlights the uncoupling between the dynamics of AHs and PAHs in tropical environments.
Additional keywords: aliphatic hydrocarbons, groundwaters, La Saline fringing reef, polycyclic aromatic hydrocarbons, tropical environment.
References
[1] UNEP Annual Report, UNEP/GCSS.XI/INF/2, DEW/1196/NA 2010 (UNEP: Nairobi, Kenya).[2] R. J. Nicholls, P. P. Wong, V. R. Burkett, J. O. Codignotto, J. E. Hay, R. F. McLean, S. Ragoonaden, C. D. Woodroffe, Coastal systems and low-lying areas, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (Eds M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, C. E. Hanson) 2007, pp. 315–356 (Cambridge University Press: Cambridge, UK).
[3] I. Valiela, Marine Ecological Processes 1995 (Springer: New York).
[4] J. Dachs, L. Méjanelle, Organic pollutants in coastal waters, sediments, and biota: a relevant driver for ecosystems during the Anthropocene? Estuaries Coasts 2010, 33, 1.
| Organic pollutants in coastal waters, sediments, and biota: a relevant driver for ecosystems during the Anthropocene?Crossref | GoogleScholarGoogle Scholar |
[5] M. J. Kennish, Polynuclear aromatic hydrocarbons, in Ecology of Estuaries: Anthropogenic Effects 1992, pp. 133–181 (CRC Press: Boca Raton, FL).
[6] A. Scarlett, T. S. Galloway, S. J. Rowland, Chronic toxicity of unresolved complex mixture (UCM) of hydrocarbons in the marine sediments. J. Soils Sed. 2007, 7, 200.
| Chronic toxicity of unresolved complex mixture (UCM) of hydrocarbons in the marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGjtr%2FN&md5=5c8c2aef1a485161807b0820842a4971CAS |
[7] I. Tolosa, J. M. Bayona, J. Albaigés, Aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in north-western Mediterranean sediments: spatial and temporal variability, fluxes, and budgets. Environ. Sci. Technol. 1996, 30, 2495.
| Aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in north-western Mediterranean sediments: spatial and temporal variability, fluxes, and budgets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslOisrk%3D&md5=bf88cb6b4c80f53410fa8da5f16a490fCAS |
[8] E. Lipiatou, I. Tolosa, R. Simó, I. Bouloubassi, J. Dachs, S. Marti, M. A. Sicre, J. M. Bayona, J. O. Grimalt, A. Saliot, J. Albaigés, Mass budget and dynamics of polycyclic aromatic hydrocarbons in the Mediterranean Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 1997, 44, 881.
| Mass budget and dynamics of polycyclic aromatic hydrocarbons in the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1GmtLs%3D&md5=7c3234770299fddc9f22d4588b3ef431CAS |
[9] J. Castro-Jiménez, N. Berrojalbiz, J. Wollgast, J. Dachs, Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. Environ. Pollut. 2012, 166, 40.
| Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column.Crossref | GoogleScholarGoogle Scholar | 22466400PubMed |
[10] I. Bouloubassi, A. Saliot, Investigation of anthropogenic and natural organic inputs in estuarine sediments using hydrocarbon markers (NAH, LAB, PAH). Oceanol. Acta 1993, 16, 145.
| 1:CAS:528:DyaK2cXit1Kjuro%3D&md5=6be41a408672cd07952cd76ce3c4b208CAS |
[11] S. G. Wakeham, Aliphatic and polycyclic aromatic hydrocarbons in Black Sea sediments. Mar. Chem. 1996, 53, 187.
| Aliphatic and polycyclic aromatic hydrocarbons in Black Sea sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkslGnsbk%3D&md5=33970abe49de00a72c333eed8f9f598dCAS |
[12] C. Guigue, M. Tedetti, N. Ferretto, N. Garcia, L. Méjanelle, M. Goutx, Spatial and seasonal variabilities of dissolved hydrocarbons in surface waters from the north-western Mediterranean Sea: results from one-year intensive sampling. Sci. Total Environ. 2014, 466–467, 650.
| Spatial and seasonal variabilities of dissolved hydrocarbons in surface waters from the north-western Mediterranean Sea: results from one-year intensive sampling.Crossref | GoogleScholarGoogle Scholar | 23959218PubMed |
[13] Z. Wang, M. Fingas, D. S. Page, Oil spill identification. J. Chromatogr. A 1999, 843, 369.
| Oil spill identification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVGkt7g%3D&md5=3d42556e92a2662cbc10992e95de66e5CAS |
[14] O. Wurl, J. P. Obbard, A review of pollutants in the sea-surface microlayer (SML): a unique habitat for marine organisms. Mar. Pollut. Bull. 2004, 48, 1016.
| A review of pollutants in the sea-surface microlayer (SML): a unique habitat for marine organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVent7c%3D&md5=f2130d50d400490605f7f6db493e277aCAS | 15172807PubMed |
[15] C. Guigue, M. Tedetti, S. Giorgi, M. Goutx, Occurrence and distribution of hydrocarbons in the surface microlayer and subsurface water from the urban coastal marine area off Marseilles, north-western Mediterranean Sea. Mar. Pollut. Bull. 2011, 62, 2741.
| Occurrence and distribution of hydrocarbons in the surface microlayer and subsurface water from the urban coastal marine area off Marseilles, north-western Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2gs77F&md5=6fafb7c64f1db52b9d7f443f1008d706CAS | 21983288PubMed |
[16] S. Díez, J. Sabaté, M. Viñas, J. M. Bayona, A. M. Solanas, J. Albaiges, The Prestige oil spill. I. Biodegradation of heavy fuel oil under simulated conditions. Environ. Toxicol. Chem. 2005, 24, 2203.
| The Prestige oil spill. I. Biodegradation of heavy fuel oil under simulated conditions.Crossref | GoogleScholarGoogle Scholar | 16193747PubMed |
[17] M. J. García-Martínez, I. Da Riva, L. Canoira, J. F. Llamas, R. Alcántara, J. L. R. Gallego, Photodegradation of polycyclic aromatic hydrocarbons in fossil fuels catalysed by supported TiO2. Appl. Catal. B 2006, 67, 279.
| Photodegradation of polycyclic aromatic hydrocarbons in fossil fuels catalysed by supported TiO2.Crossref | GoogleScholarGoogle Scholar |
[18] C. Sauret, T. Séverin, G. Vétion, C. Guigue, M. Goutx, M. Pujo-Pay, P. Conan, S. K. Fagervold, J.-F. Ghiglione, ‘Rare biosphere’ bacteria as key phenanthrene degraders in coastal seawaters. Environ. Pollut. 2014, 194, 246.
| ‘Rare biosphere’ bacteria as key phenanthrene degraders in coastal seawaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlSqtbfN&md5=5df3c2601d7360f1b76cb8bd1459ff36CAS | 25156140PubMed |
[19] O. Naïm, P. Cuet, Y. Letourneur, Experimental shift in benthic community structure, in Proceedings of 8th International Coral Reef Symposium, 24–29 June 1996, Panama City, Panama (Eds H. A. Lessios and I. G. Macintyre) 1997, 2, pp. 1873–1878. (University of Panama and Smithsonian Tropical Research Institute: Panama City, Republic of Panama)
[20] D. Mioche, P. Cuet, Métabolisme du carbone, des carbonates et des sels nutritifs en saison chaude, sur un récif frangeant soumis à une pression anthropique (Île de La Réunion, Océan Indien). C. R. Acad. Sci. Paris 1999, 329, 53.
| 1:CAS:528:DyaK1MXmtFakt7s%3D&md5=fcd797a65b31da519ebe7f762df1f73fCAS |
[21] V. Chazottes, T. Le Campion-Alsumard, M. Peyrot-Clausade, P. Cuet, The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 2002, 21, 375.
[22] J.-L. Join, J.-B. Pommé, J. Coudray, M. Daesslé, Caractérisation des aquifères basaltiques en domaine littoral. Impact d’un récif corallien. Hydrogéol. 1988, 2, 107.
[23] P. Cuet, O. Naïm, G. Faure, J. Y. Conan, Nutrient-rich groundwater impact on benthic communities of La Saline fringing reef (Reunion Island, Indian Ocean): preliminary results, in Proceedings 6th International Coral Reef Symposium, 8–12 August 1988, Townsville, Qld, Australia (Ed. J. H. Choat) 1988, vol. 2, pp. 207–212 (6th International Coral Reef Symposium Executive Committee).
[24] P. Cuet, Influence des résurgences d’eaux douces sur les caractéristiques physico-chimiques et métaboliques de l’écosystème récifal à La Réunion 1989, Ph.D. thesis, Université Aix–Marseille III, Marseille, France.
[25] J.-L. Join, Caractérisation hydrogéologique du milieu volcanique insulaire, Le Piton des Neiges – Ile de la Réunion 1991, Ph.D. thesis, Université de Montpellier II, Montpellier, France.
[26] O. Naïm, P. Cuet, V. Mangar, The Mascarene Islands, in Coral Reefs of the Indian Ocean: their Ecology and Conservation (Eds T.R. McClanahan, C. Sheppard, D.O. Obura) 2000, pp. 353–381 (Oxford University Press: New York).
[27] S. V. Smith, W. J. Kimmerer, E. A. Laws, R. E. Brock, T. W. Walsh, Kaneohe Bay sewage diversion experiment: perspectives on ecosystem. Responses to nutritional perturbation. Pac. Sci. 1981, 35, 279.
| 1:CAS:528:DyaL38Xkslyns7o%3D&md5=981073fca0c290bc9c25339df1f3d4e4CAS |
[28] B. E. Lapointe, Nutrient thresholds for bottom–up control of macroalgal blooms on coral reefs in Jamaica and south-east Florida. Limnol. Oceanogr. 1997, 42, 1119.
| Nutrient thresholds for bottom–up control of macroalgal blooms on coral reefs in Jamaica and south-east Florida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVej&md5=4a245a96234827ac31db3ac9fc317055CAS |
[29] S. Ahamada, J. Bijoux, B. Cauvin, A. Hagan, A. Harris, M. Koonjul, S. Meunier, J. P. Quod, Status of Coral Reefs in the south-west Indian Ocean Island States: Comoros, Madagascar, Mauritius, Reunion, Seychelles, in Status of Coral Reefs of the World: 2008 (Ed. C. Wilkinson) 2008, pp. 105–118 (Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre: Townsville, Qld).
[30] J. Clavier, L. Chauvaud, P. Cuet, C. Esbelin, P. Frouin, D. Taddei, G. Thouzeau, Diel variation of benthic respiration in a coral reef sediment (Reunion Island, Indian Ocean). Estuar. Coast. Shelf Sci. 2008, 76, 369.
| Diel variation of benthic respiration in a coral reef sediment (Reunion Island, Indian Ocean).Crossref | GoogleScholarGoogle Scholar |
[31] D. Taddei, P. Cuet, P. Frouin, C. Esbelin, J. Clavier, Low community photosynthetic quotient in coral reef sediments. C. R. Biol. 2008, 331, 668.
| Low community photosynthetic quotient in coral reef sediments.Crossref | GoogleScholarGoogle Scholar | 18722986PubMed |
[32] M. Tedetti, P. Cuet, C. Guigue, M. Goutx, Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multidimensional fluorescence spectroscopy. Sci. Total Environ. 2011, 409, 2198.
| Characterization of dissolved organic matter in a coral reef ecosystem subjected to anthropogenic pressures (La Réunion Island, Indian Ocean) using multidimensional fluorescence spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFWitr8%3D&md5=624acdf87ef30727f6789169e1fe6b4eCAS | 21388658PubMed |
[33] Y. Loya, B. Rinkevick, Effects of oil on coral reef communities. Mar. Ecol. Prog. Ser. 1980, 3, 167.
| Effects of oil on coral reef communities.Crossref | GoogleScholarGoogle Scholar |
[34] E. Cordier, Processus physiques et sédimentaires en milieu récifal: application aux récifs frangeants de l’Hermitage/La Saline, Ile de La Réunion 2007, Ph.D. thesis, Université de la Réunion, Saint-Denis, La Réunion, France.
[35] Ö. Gustafsson, P. M. Gschwend, Aquaic colloids: concepts, definitions and current challenges. Limnol. Oceanogr. 1997, 42, 519.
| Aquaic colloids: concepts, definitions and current challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsF2hu74%3D&md5=82db057b4575f1077da2f93493a581cbCAS |
[36] E. G. Bligh, W. J. Dyer, A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911.
| A rapid method of total lipid extraction and purification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXhtVSgt70%3D&md5=f53bf15113c5db74b26f87764f621556CAS | 13671378PubMed |
[37] M. A. Mazurek, B. R. T. Simoneit, Characterization of biogenic and petroleum-derived organic matter in aerosols over remote, rural and urban areas, in Identification and Analysis of Organic Pollutants in Air (Ed L.H. Keith) 1984, pp. 353–370 (Ann Arbor Science: Boston, MA).
[38] M. B. Yunker, R. W. Macdonald, R. Vingarzan, R. H. Mitchell, D. Goyette, S. Sylvestre, PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489.
| PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xitlaksrk%3D&md5=7243394512b48e89aed81907d20ff14aCAS |
[39] A. Delle Site, Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J. Phys. Chem. 2001, 31, 187.
[40] P. Raimbault, J. Neveux, F. Lantoine, Dosage rapide de la chlorophylle a et des phaeopigments a par fluorimétrie après extraction au méthanol. Comparaison avec la méthode classique d’extraction à l’acétone. Oceanis 2004, 30, 189.
[41] R. Sohrin, R. Sempéré, Seasonal variation in total organic carbon in the north-east Atlantic in 2000–2001. J. Geophys. Res. 2005, 110, C10S90.
| Seasonal variation in total organic carbon in the north-east Atlantic in 2000–2001.Crossref | GoogleScholarGoogle Scholar |
[42] I. T. Joliffe, Principal Component Analysis 1986, p. 271 (Springer-Verlag: New York).
[43] P. Cuet, M. J. Atkinson, J. Blanchot, B. Casareto, E. Cordier, J. Falter, P. Frouin, H. Fujimura, C. Pierret, Y. Susuki, C. Tourrand, CNP budgets of a coral-dominated fringing reef in La Reunion, France: coupling of oceanic phosphate and groundwater nitrate. Coral Reefs 2011, 30, 45.
| CNP budgets of a coral-dominated fringing reef in La Reunion, France: coupling of oceanic phosphate and groundwater nitrate.Crossref | GoogleScholarGoogle Scholar |
[44] M. Coates, D. W. Connell, J. Bodero, G. J. Miller, R. Back, Aliphatic hydrocarbons in Great Barrier Reef organisms and environment. Estuar. Coast. Shelf Sci. 1986, 23, 99.
| Aliphatic hydrocarbons in Great Barrier Reef organisms and environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xltl2hsb4%3D&md5=1b747df1b78c1d2052f62066e56d22faCAS |
[45] Y. Ternois, M. A. Sicre, A. Boireau, L. Beaufort, J. C. Miquel, C. Jeandel, Hydrocarbons, sterols and alkenones in sinking particles in the Indian Ocean sector of the Southern Ocean. Org. Geochem. 1998, 28, 489.
| Hydrocarbons, sterols and alkenones in sinking particles in the Indian Ocean sector of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlOjs78%3D&md5=94c7a756a044114372c371661baf9b8dCAS |
[46] A. Cincinelli, T. Martellini, L. Bittoni, A. Russo, A. Gambaro, L. Lepri, Natural and anthropogenic hydrocarbons in the water column of the Ross Sea (Antarctica). J. Mar. Syst. 2008, 73, 208.
| Natural and anthropogenic hydrocarbons in the water column of the Ross Sea (Antarctica).Crossref | GoogleScholarGoogle Scholar |
[47] A. M. Stortini, T. Martellini, M. Del Bubba, L. Lepri, G. Capodaglio, A. Cincinelli, n-Alkanes, PAHs and surfactants in the sea-surface microlayer and sea-water samples of the Gerlache Inlet sea (Antartica). Microchem. J. 2009, 92, 37.
| n-Alkanes, PAHs and surfactants in the sea-surface microlayer and sea-water samples of the Gerlache Inlet sea (Antartica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVWjurc%3D&md5=d41b62043508fb4aab87eaad17384b95CAS |
[48] Y. Zheng, X. Luo, W. Zhang, B. Wu, F. Han, Z. Lin, X. Wang, Enrichment behavior and transport mechanism of soil-bound PAHs during rainfall-runoff events. Environ. Pollut. 2012, 171, 85.
| Enrichment behavior and transport mechanism of soil-bound PAHs during rainfall-runoff events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSlt7zE&md5=71622d8e8ad3d40233688dddfdf0a8b0CAS | 22885221PubMed |
[49] M. Blumer, R. R. L. Guillard, T. Chase, Hydrocarbons of marine phytoplankton. Mar. Biol. 1971, 8, 183.
| Hydrocarbons of marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXktVWhsbg%3D&md5=536967f0a49dda1a504d1ad5216cf54dCAS |
[50] M. Goutx, A. Saliot, Relationship between dissolved and particulate fatty acids and hydrocarbons, chlorophyll-a and zooplankton biomass in Villefranche Bay, Mediterranean Sea. Mar. Chem. 1980, 8, 299.
| Relationship between dissolved and particulate fatty acids and hydrocarbons, chlorophyll-a and zooplankton biomass in Villefranche Bay, Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktlWnsLc%3D&md5=1019dbf65995e0834d0ab7c1c0d99468CAS |
[51] A. G. Douglas, G. Eglinton, Distribution of Alkanes, in Comparative Phytochemistry 1966, pp. 57–77 (Academic Press: New York).
[52] D. G. Shaw, J. N. Wiggs, Hydrocarbons in inter tidal environment of Kachemak Bay, Alaska. Mar. Pollut. Bull. 1980, 11, 297.
| Hydrocarbons in inter tidal environment of Kachemak Bay, Alaska.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXovFyitw%3D%3D&md5=b1d565663d43703684beb32170c5dc1cCAS |
[53] J. W. Rijstenbil, Growth and nitrogen metabolism of marine diatoms in brackish water to salinity fluctuation 1989, Ph.D. thesis, Universiteit Amsterdam.
[54] G. Cauwet, DOM in the coastal zone, in Biogeochemistry of Marine Dissolved Organic Matter (Eds D. A. Hansell, C. A. Carlson) 2002, pp 579–609 (Academic Press: New York).
[55] V. O. Elias, B. R. T. Simoneit, J. N. Cardoso, Even n-alkanes on the Amazon shelf and a northeast Pacific hydrothermal system. Naturwissenschaften 1997, 84, 415.
| Even n-alkanes on the Amazon shelf and a northeast Pacific hydrothermal system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFaltLk%3D&md5=63eda8960b69b1e6d70d61f83391e4c8CAS |
[56] Z. Wang, M. Fingas, M. Landriault, L. Sigouin, Y. Feng, J. Mullin, Using systematic and comparative analytical data to identify the source of an unknown oil on contaminated birds. J. Chromatogr. A 1997, 775, 251.
| Using systematic and comparative analytical data to identify the source of an unknown oil on contaminated birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks12gsrY%3D&md5=b105537a49db59f5637719df9a96a73dCAS |
[57] M. B. Yunker, W. J. Cretney, B. R. Fowler, R. W. Macdonald, F. A. McLaughlin, B. G. Whitehouse, On the distribution of dissolved hydrocarbons in natural water. Org. Geochem. 1991, 17, 301.
| On the distribution of dissolved hydrocarbons in natural water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltF2murs%3D&md5=f8ac8ddc2f98d9b2e30ee55f7a44f73cCAS |
[58] G. C. Cripps, Problems in the identification of anthropogenic hydrocarbons against natural background levels in the Antartic. Antarct. Sci. 1989, 14, 307.
[59] J. Chen, G. Henderson, C. C. Grimm, S. W. Lloyd, R. A. Laine, Termites fumigate their nests with naphthalene. Nature 1998, 392, 558.
| Termites fumigate their nests with naphthalene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis1Smtr8%3D&md5=09665d0e169f88ba097b429900e4a621CAS |
[60] J. J. V. Martin, Z. T. Yu, W. W. Mohn, Recent advances in understanding resin acid biodegradation: microbial diversity and metabolism. Arch. Microbiol. 1999, 172, 131.
| Recent advances in understanding resin acid biodegradation: microbial diversity and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1Gqsbg%3D&md5=08724ac3bd1857c9d281383a0279416dCAS |
[61] W. Wilcke, M. Krauss, W. Amelung, Carbon isotope signature of polycyclic aromatic hydrocarbons (PAHs): evidence for different sources in tropical and temperate environments? Environ. Sci. Technol. 2002, 36, 3530.
| Carbon isotope signature of polycyclic aromatic hydrocarbons (PAHs): evidence for different sources in tropical and temperate environments?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Glu7Y%3D&md5=9b8a10b9ac87568d4c1a3439f2d709ecCAS | 12214645PubMed |
[62] W. Wilcke, Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma 2007, 141, 157.
| Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWjsrbJ&md5=b3d48635e8ed8df2ed533bca0837e58eCAS |
[63] L. Nizzetto, R. Lohmann, R. Gioia, A. Jahnke, C. Temme, J. Dachs, P. Herckes, A. Di Guardo, K. C. Jones, PAHs in air and seawater along north-south Atlantic transect: trends, processes and possible sources. Environ. Sci. Technol. 2008, 42, 1580.
| PAHs in air and seawater along north-south Atlantic transect: trends, processes and possible sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Cjtrc%3D&md5=cd33ff67aaa7805ff1f1f937873ac038CAS | 18441806PubMed |
[64] H. F. Li, I. Fujisaki, N. Y. Su, Predicting habitat suitability of Coptotermes gestroi (Isoptera: Rhinotermitidae) with species distribution models. J. Econ. Entomol. 2013, 106, 311.
| Predicting habitat suitability of Coptotermes gestroi (Isoptera: Rhinotermitidae) with species distribution models.Crossref | GoogleScholarGoogle Scholar | 23448046PubMed |
[65] J. B. Andelman, M. J. Suess, Polynuclear aromatic hydrocarbons in the water environment. B. World Health Organ. 1970, 43, 479.
| 1:CAS:528:DyaE3MXksFelsA%3D%3D&md5=e3234d47a516a52ddfec084ce3cd1a1bCAS |