Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Source identification of atmospheric particle-bound metals at Terra Nova Bay, Antarctica

Andrea Bazzano A , Francesco Soggia A and Marco Grotti A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy.

B Corresponding author. Email: grotti@unige.it

Environmental Chemistry 12(2) 245-252 https://doi.org/10.1071/EN14185
Submitted: 12 September 2014  Accepted: 30 October 2014   Published: 25 March 2015

Environmental context. The atmosphere above Antarctica, the cleanest part of the Earth’s troposphere, serves as a valuable laboratory for studying natural atmospheric processes and for monitoring the impact of human activities on the global environment. Central to these studies is an understanding of long-range transport of pollutants to Antarctica, and distinguishing the relative contribution of natural and anthropogenic sources. We use chemical tracers and isotopic analysis to assess the origin of metals associated with atmospheric particulates in Antarctica.

Abstract. During the 2010–2011 austral summer, size-segregated aerosol samples were collected at a coastal Antarctic site (Terra Nova Bay, Victoria Land) and analysed for major and trace elements and lead isotopic composition, in order to provide a better understanding of the sources of metals and their transportation pathways towards Antarctica. Aerosol size fractionation was performed by a cascade impactor, able to collect aerosol particles of aerodynamic diameter 10–7.2, 7.2–3.0, 3.0–1.5, 1.5–0.95 and 0.95–0.49 µm. It was found that Al, Co, Fe, Li, Mn, Rb, Y and V were mainly related to crustal inputs, whereas the marine contribution was significant for Li, Mg, Na and Rb. An additional anthropogenic source influencing the concentration of Cr, Cu, Mo and Pb was clearly demonstrated. The concentration of the elements associated to the crustal and marine inputs showed high values in the coarse mode (7.2–3.0 µm), whereas the anthropogenic elements were also characterised by a high concentration in the finer (1.5–0.95 µm) particles. The study of the temporal trends of the measured chemical markers along with the meteorological variables revealed that both the crustal and anthropogenic elements were related to the air masses carried by the katabatic wind from the inland, whereas the marine input appeared to be higher in January when the sea-ice extent was reduced. Finally, lead isotope ratios pointed out that the anthropogenic input was likely related to the polluted aerosols from South America and Australia, representing the predominant fraction (50–70 %) of the lead measured in the samples.


References

[1]  B. A. Bodhaine, L. A. Barrie, R. C. Schnell, G. E. Shaw, J. K. Mckie, Symposium on the tropospheric chemistry of the Antarctic Region. Tellus B Chem. Phys. Meterol. 1992, 44, 250.
Symposium on the tropospheric chemistry of the Antarctic Region.Crossref | GoogleScholarGoogle Scholar |

[2]  M. Komárek, V. Ettler, V. Chrastný, M. Mihaljevič, Lead isotopes in environmental sciences: a review. Environ. Int. 2008, 34, 562.
Lead isotopes in environmental sciences: a review.Crossref | GoogleScholarGoogle Scholar | 18055013PubMed |

[3]  A. Bollhöfer, K. J. R. Rosman, Isotopic source signatures for atmospheric lead: the Southern Hemisphere. Geochim. Cosmochim. Acta 2000, 64, 3251.
Isotopic source signatures for atmospheric lead: the Southern Hemisphere.Crossref | GoogleScholarGoogle Scholar |

[4]  A. Bollhöfer, K. J. R. Rosman, Lead isotopic ratios in European atmospheric aerosols. Phys. Chem. Earth B 2001, 26, 835.
Lead isotopic ratios in European atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar |

[5]  A. Bollhöfer, K. J. R. Rosman, Isotopic source signatures for atmospheric lead: the Northern Hemisphere. Geochim. Cosmochim. Acta 2001, 65, 1727.
Isotopic source signatures for atmospheric lead: the Northern Hemisphere.Crossref | GoogleScholarGoogle Scholar |

[6]  S. Becagli, C. Scarchilli, R. Traversi, U. Dayan, M. Severi, D. Frosini, V. Vitale, M. Mazzola, A. Lupi, S. Nava, R. Udisti, Study of present-day sources and transport processes affecting oxidised sulphur compounds in atmospheric aerosols at Dome C (Antarctica) from year-round sampling campaigns. Atmos. Environ. 2012, 52, 98.
Study of present-day sources and transport processes affecting oxidised sulphur compounds in atmospheric aerosols at Dome C (Antarctica) from year-round sampling campaigns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVais7o%3D&md5=fcf4f6051692da1c8eb53f40c3156cfbCAS |

[7]  I. Fattori, S. Becagli, S. Bellandi, E. Castellano, M. Innocenti, A. Mannini, M. Severi, V. Vitale, R. Udisti, Chemical composition and physical features of summer aerosol at Terra Nova Bay and Dome C, Antarctica. J. Environ. Monit. 2005, 7, 1265.
Chemical composition and physical features of summer aerosol at Terra Nova Bay and Dome C, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ers7zK&md5=8d40c1aec3893134ed0a7045a5bd55dcCAS | 16307082PubMed |

[8]  B. Jourdain, S. Preunkert, O. Cerri, H. Castebrunet, R. Udisti, M. Legrand, Year-round record of size-segregated aerosol composition in central Antarctica (Concordia station): implications for the degree of fractionation of sea-salt particles. J. Geophys. Res. – Atmos 2008, 113, D14308.
Year-round record of size-segregated aerosol composition in central Antarctica (Concordia station): implications for the degree of fractionation of sea-salt particles.Crossref | GoogleScholarGoogle Scholar |

[9]  R. Udisti, U. Dayan, S. Becagli, M. Busetto, D. Frosini, M. Legrand, F. Lucarelli, S. Preunkert, M. Severi, R. Traversi, V. Vitale, Sea spray aerosol in central Antarctica. Present atmospheric behaviour and implications for paleoclimatic reconstructions. Atmos. Environ. 2012, 52, 109.
Sea spray aerosol in central Antarctica. Present atmospheric behaviour and implications for paleoclimatic reconstructions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVaju7s%3D&md5=475c7b4f54ffe907586c4bb0d2931b67CAS |

[10]  W. Maenhaut, W. H. Zoller, R. A. Duce, G. L. Hoffman, Concentration and size distribution of particulate trace elements in the south polar atmosphere. J. Geophys. Res. 1979, 84, 2421.
Concentration and size distribution of particulate trace elements in the south polar atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXks1Skt7Y%3D&md5=1f5570de1c30a75da22139f1fe4754a8CAS |

[11]  D. M. Mazzera, D. H. Lowenthal, J. C. Chow, J. G. Watson, V. Grubĭsíc, PM10 measurements at McMurdo Station, Antarctica. Atmos. Environ. 2001, 35, 1891.
PM10 measurements at McMurdo Station, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht12jsrs%3D&md5=a6150ba9aa2d8cbb9fd767cca9151250CAS |

[12]  G. Toscano, A. Gambaro, I. Moret, G. Capodaglio, C. Turetta, P. Cescon, Trace metals in aerosol at Terra Nova Bay, Antarctica. J. Environ. Monit. 2005, 7, 1275.
Trace metals in aerosol at Terra Nova Bay, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ers73O&md5=616570c0b4a587e2e73ec131714a1972CAS | 16307083PubMed |

[13]  A. Bazzano, M. Grotti, Determination of lead isotope ratios in environmental matrices by quadrupole ICP-MS working at low sample consumption rates. J. Anal. At. Spectrom. 2014, 29, 926.
Determination of lead isotope ratios in environmental matrices by quadrupole ICP-MS working at low sample consumption rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvFyqsr8%3D&md5=81f20d7d74e6decbc5aea51718292490CAS |

[14]  R Core Team, R: A Language and Environment for Statistical Computing 2012. Available at http://www.r-project.org [Verified 11 September 2014].

[15]  P. Paatero, U. Tapper, Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111.
Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values.Crossref | GoogleScholarGoogle Scholar |

[16]  G. Norris, R. Duvall, S. Brown, S. Bai, EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. EPA/600/R-14/108 2014 (US Environmental Protection Agency, Office of Research and Development: Washington, DC). Available at http://www.epa.gov/heasd/documents/PMF_5.0_User_Guide.pdf [Verified 26 January 2015].

[17]  K. H. Wedepohl, The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 58A, 959.

[18]  K. K. Turekian, Oceans, 2nd edn 1968 (Prentice-Hall: Englewood Cliffs, NJ).

[19]  M. Grotti, F. Soggia, F. Ardini, E. Magi, Major and trace element partitioning between dissolved and particulate phases in Antarctic surface snow. J. Environ. Monit. 2011, 13, 2511.
Major and trace element partitioning between dissolved and particulate phases in Antarctic surface snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2itb3F&md5=c0d0d57eea6c2f02f8a8697c8e525527CAS | 21750808PubMed |

[20]  M. Grotti, F. Soggia, F. Ardini, E. Magi, S. Becagli, R. Traversi, R. Udisti, Year-round record of dissolved and particulate metals in surface snow at Dome Concordia (East Antarctica). Chemosphere 2014, submitted
Year-round record of dissolved and particulate metals in surface snow at Dome Concordia (East Antarctica).Crossref | GoogleScholarGoogle Scholar | 25550109PubMed |

[21]  F. A. M. Planchon, C. F. Boutron, C. Barbante, G. Cozzi, V. Gaspari, E. W. Wolff, C. P. Ferrari, C. F. Boutron, Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late-20th century. Earth Planet. Sci. Lett. 2002, 200, 207.
Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late-20th century.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvF2rsLo%3D&md5=ca531a276e2fcc5484b7f136220fb1f1CAS |

[22]  B. Jourdain, M. Legrand, Year-round records of bulk and size-segregated aerosol composition and HCl and HNO3 levels in the Dumont d’Urville (coastal Antarctica) atmosphere: Implications for sea-salt aerosol fractionation in the winter and summer. J. Geophys. Res. 2002, 107, 4645.
Year-round records of bulk and size-segregated aerosol composition and HCl and HNO3 levels in the Dumont d’Urville (coastal Antarctica) atmosphere: Implications for sea-salt aerosol fractionation in the winter and summer.Crossref | GoogleScholarGoogle Scholar |

[23]  D. H. Bromwich, Satellite analyses of Antarctic Katabatic Wind behavior. Bull. Am. Meteorol. Soc. 1989, 70, 738.
Satellite analyses of Antarctic Katabatic Wind behavior.Crossref | GoogleScholarGoogle Scholar |

[24]  K. Van de Velde, P. Vallelonga, J. P. Candelone, K. J. R. Rosman, V. Gaspari, G. Cozzi, C. Barbante, R. Udisti, P. Cescon, C. F. Boutron, Pb isotope record over one century in snow from Victoria Land, Antarctica. Earth Planet. Sci. Lett. 2005, 232, 95.
Pb isotope record over one century in snow from Victoria Land, Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlOnsLo%3D&md5=f6e2751ffbf0a74834383de368edda62CAS |

[25]  M. Revel-Rolland, P. De Deckker, B. Delmonte, P. Hesse, J. Magee, I. Basile-Doelsch, F. Grousset, D. Bosch, Eastern Australia: a possible source of dust in East Antarctica interglacial ice. Earth Planet. Sci. Lett. 2006, 249, 1.
Eastern Australia: a possible source of dust in East Antarctica interglacial ice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslGnu7w%3D&md5=2c1bf15ad0cdd02eb0cdc0f3b15150dbCAS |

[26]  D. M. Gaiero, Dust provenance in Antarctic ice during glacial periods: from where in southern South America? Geophys. Res. Lett. 2007, 34, L17707.
Dust provenance in Antarctic ice during glacial periods: from where in southern South America?Crossref | GoogleScholarGoogle Scholar |

[27]  S. Gassó, A. Stein, F. Marino, E. Castellano, R. Udisti, J. Ceratto, A combined observational and modeling approach to study modern dust transport from the Patagonia desert to East Antarctica. Atmos. Chem. Phys. 2010, 10, 8287.
A combined observational and modeling approach to study modern dust transport from the Patagonia desert to East Antarctica.Crossref | GoogleScholarGoogle Scholar |

[28]  P. Vallelonga, P. Gabrielli, E. Balliana, A. Wegner, B. Delmonte, C. Turetta, G. Burton, F. Vanhaecke, K. J. R. Rosman, S. Hong, C. F. Boutron, P. Cescon, C. Barbante, Lead isotopic compositions in the EPICA Dome C ice core and Southern Hemisphere Potential Source Areas. Quat. Sci. Rev. 2010, 29, 247.
Lead isotopic compositions in the EPICA Dome C ice core and Southern Hemisphere Potential Source Areas.Crossref | GoogleScholarGoogle Scholar |

[29]  G. Zreda-Gostynska, P. R. Kyle, D. Finnegan, K. M. Prestbo, Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. J. Geophys. Res. 1997, 102, 15039.
Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1Cqsbk%3D&md5=c9d2171bb303012f3a0c655b711fd0f2CAS |

[30]  A. Matsumoto, T. K. Hinkley, Trace metal suites in Antarctic pre-industrial ice are consistent with emissions from quiescent degassing of volcanoes worldwide. Earth Planet. Sci. Lett. 2001, 186, 33.
Trace metal suites in Antarctic pre-industrial ice are consistent with emissions from quiescent degassing of volcanoes worldwide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1ejsrk%3D&md5=e147c5603e1487f6d5e12e8fd4971d7fCAS |

[31]  J. M. Pacyna, E. G. Pacyna, An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 9, 269.
An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFegt7k%3D&md5=5f26a7d3112e773d43bc1ff0a1a89552CAS |

[32]  D. Biancato, D. Ceccato, F. Chiminello, P. Mittner, Micro-PIXE and principal component analysis in a study of internal mixing phenomena in Antarctic coastal aerosol. Nucl. Instrum. Methods Phys. Res. 2006, 249, 561.
Micro-PIXE and principal component analysis in a study of internal mixing phenomena in Antarctic coastal aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFymsL0%3D&md5=a32df006c1ad0a613fa6bb99e70a1d67CAS |

[33]  M. Chavent, H. Guegan, V. Kuéntz, B. Patouille, J. Saracco, PCA- and PMF-based methodology for air pollution sources identification and apportionment. Environmetrics 2009, 8, 928.

[34]  A. Bollhöfer, K. J. R. Rosman, The temporal stability in lead isotopic signatures at selected sites in the Southern and Northern Hemispheres. Geochim. Cosmochim. Acta 2002, 66, 1375.
The temporal stability in lead isotopic signatures at selected sites in the Southern and Northern Hemispheres.Crossref | GoogleScholarGoogle Scholar |

[35]  A. F. Bollhöfer, K. J. R. Rosman, A. L. Dick, W. Chisholm, G. R. Burton, R. D. Loss, W. Zahorowski, Concentration, isotopic composition, and sources of lead in Southern Ocean air during 1999/2000, measured at the Cape Grim Baseline Air Pollution Station, Tasmania. Geochim. Cosmochim. Acta 2005, 69, 4747.
Concentration, isotopic composition, and sources of lead in Southern Ocean air during 1999/2000, measured at the Cape Grim Baseline Air Pollution Station, Tasmania.Crossref | GoogleScholarGoogle Scholar |

[36]  F. A. M. Planchon, K. Van de Velde, K. J. R. Rosman, E. W. Wolff, C. P. Ferrari, C. F. Boutron, One hundred fifty–year record of lead isotopes in Antarctic snow from Coats Land. Geochim. Cosmochim. Acta 2003, 67, 693.
One hundred fifty–year record of lead isotopes in Antarctic snow from Coats Land.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlGntw%3D%3D&md5=71dae4c81db573ba457db090ae9de4f1CAS |

[37]  T. R. Parish, D. H. Bromwich, Continental-scale simulation of the Antarctic Katabatic Wind regime. J. Clim. 1991, 4, 135.
Continental-scale simulation of the Antarctic Katabatic Wind regime.Crossref | GoogleScholarGoogle Scholar |

[38]  S. Argentini, P. Del Buono, A. M. Della Vedova, G. Mastrantonio, A statistical analysis of wind in Terra Nova Bay, Antarctica, for the austral summers 1988 and 1989. Atmos. Res. 1995, 39, 145.
A statistical analysis of wind in Terra Nova Bay, Antarctica, for the austral summers 1988 and 1989.Crossref | GoogleScholarGoogle Scholar |

[39]  M. Ikegawa, M. Kimura, K. Honda, I. Akabane, K. Makita, H. Motoyama, Y. Fujii, Y. Itokawa, Geographical variations of major and trace elements in East Antarctica. Atmos. Environ. 1999, 33, 1457.
Geographical variations of major and trace elements in East Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVyksbg%3D&md5=f2ec37cd2da2207fe126872631befd44CAS |