Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Determination of diffusion coefficients of dissolved organic matter in the Churchill River estuary system, Hudson Bay (Canada)

J. Balch A and C. Guéguen B C
+ Author Affiliations
- Author Affiliations

A Environmental and Life Sciences graduate program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8, Canada.

B Chemistry Department, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8, Canada.

C Corresponding author. Email: celinegueguen@trentu.ca

Environmental Chemistry 12(2) 253-260 https://doi.org/10.1071/EN14182
Submitted: 11 September 2014  Accepted: 13 December 2014   Published: 25 March 2015

Environmental context. Reliable interpretation of metal levels measured by diffusive gradients in thin film (DGT) requires a sound understanding of the diffusion properties of dissolved organic matter (DOM), the main ligand of metals in natural waters. The present study determined that the molecular weight of DOM and conductivity are the main factors controlling the diffusion of freshly collected estuarine DOM across the DGT diffusive gel.

Abstract. Diffusion coefficients (D) and the molecular weight distribution (MW) of 18 dissolved organic matter (DOM) samples collected in the Churchill River estuary system (Manitoba, Canada) were determined using a diffusive cell apparatus. NaN3 addition has been shown to preserve the DOM MW distribution within 5 weeks of collection whereas the diffusive properties (i.e. D) were strongly influenced by storage conditions, suggesting D must be determined on freshly collected material. Aquatic DOM from the river and estuarine sites was capable of diffusing across a polyacrylamide diffusive gel membrane with mean D values ranging from 2.74 × 10–6 to 6.98 × 10–6 cm2 s–1 and from 2.42 × 10–6 to 10.7 × 10–6 cm2 s–1 respectively, congruent with previous studies using humic substances and natural DOM. The molecular weight of the river and estuary DOM samples (~400–830 Da) measured using asymmetrical flow-field flow fractionation (AF4) strongly influenced D, with larger MW DOM having lower D values. Conductivity had a significant negative correlation with D in estuarine samples collected at high and low tides (R2 = 0.82 and 0.46 respectively). These results suggest that MW and conductivity can significantly influence D of DOM in river and marine-dominated sites respectively.

Additional keywords: estuary, flow field-flow fractionation, molecular weight.


References

[1]  W. Davison, H. Zhang, In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 1994, 367, 546.
In situ speciation measurements of trace components in natural waters using thin-film gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsVemtrc%3D&md5=e34a75ce300be618761ec736d2792f90CAS |

[2]  W. Davison, H. Zhang, Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics. Environ. Chem. 2012, 9, 1.
Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amtbs%3D&md5=9a2cd144d20e8df121dca13aeb1b582fCAS |

[3]  M. Schintu, L. Durante, A. Maccioni, P. Meloni, S. Degetto, A. Contu, Measurement of environmental trace-metal levels in Mediterranean coastal areas with transplanted mussels and DGT techniques. Mar. Pollut. Bull. 2008, 57, 832.
Measurement of environmental trace-metal levels in Mediterranean coastal areas with transplanted mussels and DGT techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlGmur4%3D&md5=1ea8f6850dc6df7220eee35cd4df1d7cCAS | 18396298PubMed |

[4]  H. Zhang, W. Davison, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal. Chem. 1995, 67, 3391.
Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslKgtrc%3D&md5=cffef51758f78e7bddf0703845f4ad15CAS |

[5]  C. Guéguen, O. Clarisse, A. Perroud, A. McDonald, Chemical speciation and partitioning of trace metals (Cd, Co, Cu, Ni, Pb) in the lower Athabasca River and its tributaries (Alberta, Canada). J. Monit. Environ. 2011, 13, 2865.
Chemical speciation and partitioning of trace metals (Cd, Co, Cu, Ni, Pb) in the lower Athabasca River and its tributaries (Alberta, Canada).Crossref | GoogleScholarGoogle Scholar |

[6]  M. Tusseau-Vuillemin, R. Gilbin, M. Taillefert, A dynamic numerical model to characterize labile metal complexes collected with diffusion gradient in thin films devices. Environ. Sci. Technol. 2003, 37, 1645.
A dynamic numerical model to characterize labile metal complexes collected with diffusion gradient in thin films devices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFGnu7o%3D&md5=a219c3b199e1da97d9361fa5f775722fCAS | 12731849PubMed |

[7]  H. Zhang, W. Davison, Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films. Anal. Chem. 2000, 72, 4447.
Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1Oku70%3D&md5=e77edb15b1615cbe89e792d4fff0f949CAS | 11008782PubMed |

[8]  J. Balch, C. Guéguen, Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances. Chemosphere 2015, 119, 498.
Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht12nsLbP&md5=547543e4015823e3b10c2cfe43afed04CAS | 25112575PubMed |

[9]  C. Guéguen, R. Gilbin, M. Pardos, J. Dominik, Water toxicity and metal contamination assessment in a polluted river: the Upper Vistula River (Poland). Appl. Geochem. 2004, 19, 153.
Water toxicity and metal contamination assessment in a polluted river: the Upper Vistula River (Poland).Crossref | GoogleScholarGoogle Scholar |

[10]  B. Koukal, C. Guéguen, M. Pardos, J. Dominik, Influence of humic substances on the toxic effects of Cd and Zn on the green alga Pseudokirchneriella subcapitata. Chemosphere 2003, 53, 953.
Influence of humic substances on the toxic effects of Cd and Zn on the green alga Pseudokirchneriella subcapitata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVKhtLo%3D&md5=afdce62767e364f42c2399cc00a27060CAS | 14505718PubMed |

[11]  J. Lead, K. J. Wilkinson, B. J. Cutak, C. K. Larive, S. Assemi, R. Beckett, Diffusion coefficients and polydispersities of the Suwannee River fulvic acid: comparison of fluorescence correlation spectroscopy, pulsed-field gradient nuclear magnetic resonance and flow field-flow fractionation. Environ. Sci. Technol. 2000, 34, 3508.
Diffusion coefficients and polydispersities of the Suwannee River fulvic acid: comparison of fluorescence correlation spectroscopy, pulsed-field gradient nuclear magnetic resonance and flow field-flow fractionation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1Wgurs%3D&md5=a633af35bf5bd0af8823f3309f9eccfcCAS |

[12]  J. Lead, K. J. Wilkinson, K. Starchev, S. Canonica, J. Buffle, Determination of diffusion coefficients of humic substances by fluorescence correlation spectroscopy: role of solution conditions. Environ. Sci. Technol. 2000, 34, 1365.
Determination of diffusion coefficients of humic substances by fluorescence correlation spectroscopy: role of solution conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVSqu78%3D&md5=735e5cddcbeab4fc34ab08c37ccfccabCAS |

[13]  H. Zhang, In-situ speciation of Ni and Zn in freshwaters: comparison between DGT measurements and speciation models. Environ. Sci. Technol. 2004, 38, 1421.
In-situ speciation of Ni and Zn in freshwaters: comparison between DGT measurements and speciation models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlWguw%3D%3D&md5=85de956de48a47852cf1b1caf57d66f3CAS | 15046343PubMed |

[14]  K. W. Warnken, B. Davison, H. Zhang, Interpretation of in situ speciation measurements of inorganic and organically complexed trace metals in freshwater by DGT. Environ. Sci. Technol. 2008, 42, 6903.
Interpretation of in situ speciation measurements of inorganic and organically complexed trace metals in freshwater by DGT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFSmurk%3D&md5=bb84ce9a6b09e42af21978788ccf6b67CAS | 18853807PubMed |

[15]  S. Scally, W. Davison, H. Zhang, Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films. Anal. Chim. Acta 2006, 558, 222.
Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFygtw%3D%3D&md5=da6bcb9f4d2d9cb2410b138a8f6d4968CAS |

[16]  Y. Wang, C. Combe, M. M. Clark, The effects of pH and calcium on the diffusion coefficient of humic acid. J. Membr. Sci. 2001, 183, 49.
The effects of pH and calcium on the diffusion coefficient of humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpsVCrtQ%3D%3D&md5=8877a83cfa3cd8a649c48d732a9d6a96CAS |

[17]  J. Boehme, M. Wells, Fluorescence variability of marine and terrestrial colloids: Examining size fractions of chromophoric dissolved organic matter in the Damariscotta River estuary. Mar. Chem. 2006, 101, 95.
Fluorescence variability of marine and terrestrial colloids: Examining size fractions of chromophoric dissolved organic matter in the Damariscotta River estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVyjtrc%3D&md5=b0329e607c5f1cf49bd4c8267c070505CAS |

[18]  C. Guéguen, M. A. Granskog, G. McCullough, D. G. Barber, Characterisation of colored dissolved organic matter in Hudson Bay and Hudson Strait using parallel factor analysis. J. Mar. Syst. 2011, 88, 423.
Characterisation of colored dissolved organic matter in Hudson Bay and Hudson Strait using parallel factor analysis.Crossref | GoogleScholarGoogle Scholar |

[19]  B. Stolpe, L. Guo, A. M. Shiller, M. Hassellov, Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation. Mar. Chem. 2010, 118, 119.
Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFeksbY%3D&md5=0d82533a370b25d06ddf599c015caca8CAS |

[20]  H. Carter, E. Tipping, J. Koprivnjak, M. Miller, B. Cookson, J. Hamilton-Taylor, Freshwater DOM quantity and quality from a two-component model of UV absorbance. Water Res. 2012, 46, 4532.
Freshwater DOM quantity and quality from a two-component model of UV absorbance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Gis7g%3D&md5=d91955b9c9be20c0fa47d9fa205597fbCAS | 22698253PubMed |

[21]  E. Tipping, H. T. Corbishley, J. F. Koprivnjak, D. J. Lapworth, M. P. Miller, C. D. Vincent, J. Hamilton-Taylor, Quantification of natural DOM from UV absorption at two wavelengths. Environ. Chem. 2009, 6, 472.
Quantification of natural DOM from UV absorption at two wavelengths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslGjsbo%3D&md5=ef29a7006e5cabc16098794a4617eaddCAS |

[22]  C. Guéguen, C. W. Cuss, Characterization of aquatic dissolved organic matter by asymmetrical flow field-flow fractionation coupled to UV-Visible diode array and excitation emission matrix fluorescence. J. Chromatogr. A 2011, 1218, 4188.
Characterization of aquatic dissolved organic matter by asymmetrical flow field-flow fractionation coupled to UV-Visible diode array and excitation emission matrix fluorescence.Crossref | GoogleScholarGoogle Scholar | 21227433PubMed |

[23]  C. Lønborg, K. Davidson, X. Álvarez–Salgado, A. Miller, Bioavailability and bacterial degradation rates of dissolved organic matter in a temperate coastal area during an annual cycle. Mar. Chem. 2009, 113, 219.
Bioavailability and bacterial degradation rates of dissolved organic matter in a temperate coastal area during an annual cycle.Crossref | GoogleScholarGoogle Scholar |

[24]  H. Zhang, W. Davison, Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal. Chim. Acta 1999, 398, 329.
Diffusional characteristics of hydrogels used in DGT and DET techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFeqtLk%3D&md5=db0c313918a95573150668fd8b0a243fCAS |

[25]  J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, K. Mopper, Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955.
Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter.Crossref | GoogleScholarGoogle Scholar |

[26]  C. W. Cuss, C. Guéguen, Determination of relative molecular weights of fluorescent components in dissolved organic matter using asymmetrical flow field-flow fractionation and parallel factor analysis. Anal. Chim. Acta 2012, 733, 98.
Determination of relative molecular weights of fluorescent components in dissolved organic matter using asymmetrical flow field-flow fractionation and parallel factor analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1Wntr0%3D&md5=21460aaec2e56b96be95dc2c7e69c87aCAS | 22704382PubMed |

[27]  P. G. Coble, Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325.
Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnslWltg%3D%3D&md5=1e30a6259d65e1fc6be1ef70c61191ffCAS |

[28]  L. Guo, P. H. Santschi, Ultrafiltration and its applications to sampling and characterization of aquatic colloids, in Environmental Colloids and Particles: Behaviour, Separation and Characterisation (Eds K. Wilkinson and J. Lead) 2007, International Union of Pure and Applied Chemistry (IUPAC) Series on Analytical and Physical Chemistry of Environmental Systems, Chapt. 4, pp. 159–221 (Wiley: Chichester, UK).

[29]  R. Beckett, Determination of molecular weight distributions of fulvic and humic acids using flow field-flow fractionation. Environ. Sci. Technol. 1987, 21, 289.
Determination of molecular weight distributions of fulvic and humic acids using flow field-flow fractionation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXnt1GmtQ%3D%3D&md5=c0402c54eecd2c81334924023c1f5cd8CAS | 22185108PubMed |

[30]  K. Furukawa, Y. Takahashi, Effect of complexation with humic substances on diffusion of metal ions in water. Chemosphere 2008, 73, 1272.
Effect of complexation with humic substances on diffusion of metal ions in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSgsL%2FN&md5=1a02be078d862fc4048d35df46d84a42CAS | 18722642PubMed |

[31]  P. Kraal, B. Jansen, K. Nierop, J. Verstraten, Copper complexation by tannic acid in aqueous solution. Chemosphere 2006, 65, 2193.
Copper complexation by tannic acid in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cqsb3F&md5=c674b4310408bfabc223eb163e1374ddCAS | 16837024PubMed |

[32]  B. L. Larner, A. J. Seen, Evaluation of paper-based diffusive gradients in thin film samplers for trace metal sampling. Anal. Chim. Acta 2005, 539, 349.
Evaluation of paper-based diffusive gradients in thin film samplers for trace metal sampling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslOlu78%3D&md5=30c951caebd43678107a83d36ce9e6caCAS |