Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

TlI and TlIII presence in suspended particulate matter: speciation analysis of thallium in wastewater

Natalia Ospina-Alvarez A B , Pawel Burakiewicz A , Monika Sadowska A and Beata Krasnodebska-Ostrega A
+ Author Affiliations
- Author Affiliations

A University of Warsaw, Faculty of Chemistry, Pasteura 1, P-02-093 Warsaw, Poland.

B Corresponding author. Email: nospina@chem.uw.edu.pl; nospina.alvarez@me.com

Environmental Chemistry 12(3) 374-379 https://doi.org/10.1071/EN14181
Submitted: 10 September 2014  Accepted: 7 November 2014   Published: 9 April 2015

Environmental context. Thallium occurs in the environment in two oxidation states, with TlIII being 1000-fold more toxic than TlI. We present a fractionation and speciation study of thallium in suspended particulate matter from highly polluted wastewater samples, and elucidate the dominant forms of thallium.

Abstract. Thallium (Tl) is a toxic element, whose toxicity is affected by its redox state. Compared with TlIII, TlI is thermodynamically more stable and less reactive; therefore in aquatic environments, dissolved thallium is mostly present as TlI. However, TlIII could be 1000 times more toxic than TlI. A combination of a fractionation and a speciation study carried out in highly polluted wastewater samples from a mining area in southern Poland in order to characterise chemical speciation of Tl in physically defined fractions is presented here. Total, particulate and dissolved thallium was determined. A leaching experiment based on forming TlIII complexed with diethylene triamine penta-acetic acid – a TlIII–DTPA complex – was performed in filters containing suspended particulate matter after single (0.45 µm) and sequential filtration (15 + 0.45 µm) of wastewater samples. This is the first speciation study of Tl carried out in suspended particulate matter. The results obtained indicate that the dominant form of Tl in suspended particulate matter is TlI, but TlIII could be found in suspended particulate matter fractions larger than 0.45 µm.

Additional keywords: metal speciation, thallium(III), DTPA, SPM


References

[1]  V. K. Gupta, A. Imran, H. Y. Aboul-Enein, Metal ion speciation in the environment: distribution, toxicities and analyses, in Developments in Environmental Science (Eds D. Sarkar, R. Datta, R. Hannigan) 2007, pp. 33–56 (Elsevier: Amsterdam).

[2]  H. Singh, P. Mahajan, S. Kaur, D. Batish, R. Kohli, Chromium toxicity and tolerance in plants. Environ. Chem. Lett. 2013, 11, 229.
Chromium toxicity and tolerance in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCqsrbI&md5=9dbf99d34443fc0120d40155cec1e82bCAS |

[3]  A. K. Shanker, C. Cervantes, H. Loza-Tavera, S. Avudainayagam, Chromium toxicity in plants. Environ. Int. 2005, 31, 739.
Chromium toxicity in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslSksrY%3D&md5=0b1a61723e609309d6b6c658428d9d33CAS | 15878200PubMed |

[4]  E. D. Goldberg, Marine geochemistry I: chemical scavengers of the sea. J. Geol. 1954, 62, 249.
Marine geochemistry I: chemical scavengers of the sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXksF2rtw%3D%3D&md5=64f874d1f2a45df0c7999e62ba9935b2CAS |

[5]  A. M. Ure, P. Quevauviller, H. Muntau, B. Griepink, Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135.
Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXpsVWmsw%3D%3D&md5=37034749a7c08cf738bb044c62aa3b92CAS |

[6]  S. Caroli, Element Speciation in Bioinorganic Chemistry 1996 (Wiley: New York).

[7]  S. Chandrawanshi, M. Sharma, K. S. Patel, Field determination of thallium in water. Fresenius J. Anal. Chem. 1995, 351, 305.
Field determination of thallium in water.Crossref | GoogleScholarGoogle Scholar |

[8]  M. S. El-Shahawi, A. S. Bashammakh, S. O. Bahaffi, Chemical speciation and recovery of gold(I, III) from wastewater and silver by liquid–liquid extraction with the ion-pair reagent amiloride monohydrochloride and AAS determination. Talanta 2007, 72, 1494.
Chemical speciation and recovery of gold(I, III) from wastewater and silver by liquid–liquid extraction with the ion-pair reagent amiloride monohydrochloride and AAS determination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFKiu74%3D&md5=aad5b41163a13cb43bb1187270b0b9b5CAS | 19071789PubMed |

[9]  B. Krasnodębska-Ostręga, M. Sadowska, K. Piotrowska, M. Wojda, Thallium(III) determination in the Baltic seawater samples by ICP MS after preconcentration on SGX C18 modified with DDTC. Talanta 2013, 112, 73.
Thallium(III) determination in the Baltic seawater samples by ICP MS after preconcentration on SGX C18 modified with DDTC.Crossref | GoogleScholarGoogle Scholar | 23708540PubMed |

[10]  M. A. Vieira, P. Grinberg, C. R. R. Bobeda, M. N. M. Reyes, R. C. Campos, Non-chromatographic atomic spectrometric methods in speciation analysis: a review. Spectrochim Acta B 2009, 64, 459.
Non-chromatographic atomic spectrometric methods in speciation analysis: a review.Crossref | GoogleScholarGoogle Scholar |

[11]  L. Zhang, T. Huang, X. Liu, M. Zhang, K. Li, Selective solid-phase extraction of trace thallium with nano-Al2O3 from environmental samples. J. Anal. Chem. 2011, 66, 368.
Selective solid-phase extraction of trace thallium with nano-Al2O3 from environmental samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVKhu78%3D&md5=9ec86ba184778575c617d9b47f02c600CAS |

[12]  T. S. Lin, J. O. Nriagu, Thallium speciation in river waters with Chelex-100 resin. Anal. Chim. Acta 1999, 395, 301.
Thallium speciation in river waters with Chelex-100 resin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltV2isbo%3D&md5=16093a0cf7b7b3441515d2459a59481cCAS |

[13]  H. R. Rajabi, M. Shamsipur, M. M. Zahedi, M. Roushani, On-line flow injection solid-phase extraction using imprinted polymeric nanobeads for the preconcentration and determination of mercury ions. Chem. Eng. J. 2015, 259, 330.
On-line flow injection solid-phase extraction using imprinted polymeric nanobeads for the preconcentration and determination of mercury ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVCjsbzO&md5=36b48d1105b16f9d4886df54eddf24a1CAS |

[14]  A. Karatepe, M. Soylak, L. Elçi, Selective preconcentration of thallium species as chloro and iodo complexes on Chromosorb 105 resin prior to electrothermal atomic absorption spectrometry. Talanta 2011, 85, 1974.
Selective preconcentration of thallium species as chloro and iodo complexes on Chromosorb 105 resin prior to electrothermal atomic absorption spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2rurnE&md5=bbee6dae899bd9fd3bddb26bd44ca255CAS | 21872046PubMed |

[15]  A. Duran, M. Tuzen, M. Soylak, Speciation of CrIII and CrVI in geological and water samples by ytterbium(III) hydroxide coprecipitation system and atomic absorption spectrometry. Food Chem. Toxicol. 2011, 49, 1633.
Speciation of CrIII and CrVI in geological and water samples by ytterbium(III) hydroxide coprecipitation system and atomic absorption spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFWit7c%3D&md5=21a09d3aacc6c6d99c519ddbe7f235baCAS | 21530602PubMed |

[16]  L. Wang, B. Hu, Z. Jiang, Z. Li, Speciation of CrII and CrVI in aqueous samples by coprecipitation/slurry sampling fluorination-assisted graphite furnace atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2002, 82, 387.
Speciation of CrII and CrVI in aqueous samples by coprecipitation/slurry sampling fluorination-assisted graphite furnace atomic absorption spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosF2gtrk%3D&md5=c062761ed595f93a964f5f61c6fe8bbdCAS |

[17]  P. Couture, C. Fortin, L. Hare, D. Lapointe, D. Pitre, Critical review of thallium in aquatic ecosystems. Institut national de la recherche scientifique, Centre Eau Terre Environnement (INRS-ETE), Université du Québec, Research Report R-1272 2011, p. 2 (Québec, QC, Canada).

[18]  G. Kazantzis, Thallium in the environment and health effects. Environ. Geochem. Health 2000, 22, 275.
Thallium in the environment and health effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1Snsbo%3D&md5=ec5b2274e04a339f389ff17454897da4CAS |

[19]  S. Aldridge, A. J. Downs (Eds), New light on the chemistry of the Group 13 metals, in The Group 13 Metals: Aluminium, Gallium, Indium and Thallium Chemical Patterns and Peculiarities 2011, pp. 1–74 (Wiley: Weinheim, Germany).

[20]  T. Xiao, F. Yang, S. Li, B. Zheng, Z. Ning, Thallium pollution in China: a geo-environmental perspective. Sci. Total Environ. 2012, 421–422, 51.
Thallium pollution in China: a geo-environmental perspective.Crossref | GoogleScholarGoogle Scholar | 21514625PubMed |

[21]  40 CFR Part 423, Appendix A to Part 423 – 126 Priority Pollutants 2012 (US EPA: Washington, DC).

[22]  L. Ralph, M. R. Twiss, Comparative toxicity of thallium(I), thallium(III), and cadmium(II) to the unicellular alga Chlorella isolated from Lake Erie. Bull. Environ. Contam. Toxicol. 2002, 68, 261.
Comparative toxicity of thallium(I), thallium(III), and cadmium(II) to the unicellular alga Chlorella isolated from Lake Erie.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt12gtw%3D%3D&md5=cfb486c22d687541af9cb5d4ee37a413CAS | 11815797PubMed |

[23]  C. H. Lan, T. S. Lin, Acute toxicity of trivalent thallium compounds to Daphnia magna. Ecotoxicol. Environ. Saf. 2005, 61, 432.
Acute toxicity of trivalent thallium compounds to Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Wktb4%3D&md5=6bd582952ffadd3a582d5e923eb82706CAS | 15922810PubMed |

[24]  F. Martín, I. Garcia, C. Dorronsoro, M. Simon, J. Aguilar, I. Ortiz, E. Fernandez, J. Fernandez, Thallium behavior in soils polluted by pyrite tailings (Aznalcóllar, Spain). Soil Sediment Contam 2004, 13, 25.
Thallium behavior in soils polluted by pyrite tailings (Aznalcóllar, Spain).Crossref | GoogleScholarGoogle Scholar |

[25]  B. Krasnodȩbska-Ostrȩga, K. Dmowski, E. Stryjewska, J. Golimowski, Determination of thallium and other elements (As, Cd, Cu, Mn, Pb, Se, Sb, and Zn) in water and sediment samples from the vicinity of the zinc–lead smelter in Poland. J. Soils Sediments 2005, 5, 71.
Determination of thallium and other elements (As, Cd, Cu, Mn, Pb, Se, Sb, and Zn) in water and sediment samples from the vicinity of the zinc–lead smelter in Poland.Crossref | GoogleScholarGoogle Scholar |

[26]  N. Ospina-Alvarez, L. Głaz, K. Dmowski, B. Krasnodębska-Ostręga, Mobility of toxic elements in carbonate sediments from a mining area in Poland. Environ. Chem. Lett. 2014, 12, 435.
Mobility of toxic elements in carbonate sediments from a mining area in Poland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslGqsbs%3D&md5=5a2a76717cda24bfad509ef698ff74f0CAS | 25165429PubMed |

[27]  International Union of Pure and Applied Chemistry, Applied Chemistry Division, Commission on Atmospheric Chemistry Glossary of atmospheric chemistry terms. Pure Appl. Chem. 1990, 62, 2167.

[28]  H. Tsubota, S. Nakamura, K. Shitashima, Trace metals in the north Pacific – recent development of clean techniques and their applications to ocean chemistry, in Elsevier Oceanography Series (Ed. T. Teramoto) 1993, pp. 169–184 (Elsevier: Amsterdam, the Netherlands).

[29]  M. R. Twiss, B. S. Twining, N. S. Fisher, Bioconcentration of inorganic and organic thallium by freshwater phytoplankton. Environ. Toxicol. Chem. 2004, 23, 968.
Bioconcentration of inorganic and organic thallium by freshwater phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Kgtr0%3D&md5=dc818624d763e043f784a5835835903aCAS | 15095893PubMed |

[30]  I. Ali, H. Y. Aboul-Enein, Instrumental Methods in Metal Ion Speciation 2006 (CRC Press: Boca Raton, FL).

[31]  Y.-L. Chu, R.-Y. Wang, S.-J. Jiang, Speciation analysis of thallium by reversed-phase liquid chromatography–inductively coupled plasma mass spectrometry. J. Chinese Chem. Soc. 2012, 59, 219.
Speciation analysis of thallium by reversed-phase liquid chromatography–inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1aisLY%3D&md5=b530f366be0e78be15a9a66ff52722abCAS |

[32]  J. Pałdyna, B. Krasnodębska-Ostręga, M. Sadowska, J. Gołębiewska, Indirect speciation analysis of thallium in plant extracts by anodic stripping voltammetry. Electroanal. 2013, 25, 1926.
Indirect speciation analysis of thallium in plant extracts by anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar |

[33]  J. Lis, A. Pasieczna, B. Karbowska, W. Zembrzuski, Z. Lukaszewski, Thallium in soils and stream sediments of a Zn–Pb mining and smelting area. Environ. Sci. Technol. 2003, 37, 4569.
Thallium in soils and stream sediments of a Zn–Pb mining and smelting area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Onurs%3D&md5=e2d236cadb2f19562dabfcf4cabc830dCAS | 14594362PubMed |

[34]  American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater 1995 (United Book Press: Washington, DC).

[35]  National Recommended Water Quality Criteria – Correction. EPA 822-Z-99–001 1999 (US EPA, Office of Water: Washington, DC).

[36]  L. B. Gilman, G. N. LeBlanc, R. Revesz, Preparation of Environmental Samples for Metal Analysis Using Microwave Digestion. CEM Corporation. Report RD022 1996 (Charlotte, NC, USA).

[37]  B. Krasnodębska-Ostręga, J. Pałdyna, M. Wawrzyńska, E. Stryjewska, Indirect anodic stripping voltammetric determination of TlI and TlIII in the Baltic seawater samples enriched in thallium species. Electroanal. 2010, 23, 605.

[38]  A. Nolan, D. Schaumloffel, E. Lombi, L. Ouerdane, R. Lobinski, M. McLaughlin, Determination of TlI and TlIII by IC–ICP-MS and application to Tl speciation analysis in the Tl hyperaccumulator plant Iberis intermedia. J. Anal. At. Spectrom. 2004, 19, 757.
Determination of TlI and TlIII by IC–ICP-MS and application to Tl speciation analysis in the Tl hyperaccumulator plant Iberis intermedia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksF2ltL4%3D&md5=910acfac675b7717e0b74a37ff0aa8edCAS |

[39]  H. D. Khavidaki, M. Aghaie, M. R. Shishehbore, H. Aghaie, Adsorptive removal of thallium(III) ions from aqueous solutions using eucalyptus leaves powders. Indian J. Chem. Tech. 2013, 20, 380.
| 1:CAS:528:DC%2BC2cXpsl2rsQ%3D%3D&md5=0c4e0994645107853c7082f45ad9c590CAS |