The formation and fate of organoarsenic species in marine ecosystems: do existing experimental approaches appropriately simulate ecosystem complexity?
Elliott G. Duncan A B , William A. Maher A and Simon D. Foster AA Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, University Drive, Bruce, ACT 2601, Australia.
B Corresponding author. Present address: CSIRO Agriculture, Centre for Environment and Life Sciences, Underwood Avenue, Floreat, WA 6014, Australia. Email: elliott.duncan@csiro.au
Elliott Duncan (B.Res.Env.Sci. 2007, Hons 1st class 2008, Ph.D. 2013) is a postdoctoral researcher at CSIRO Agriculture. Previously he undertook Ph.D. studies in the Ecochemistry Laboratory, Institute of Applied Ecology at the University of Canberra. His research interests include the biogeochemical cycling of arsenic and other metalloids in marine ecosystems focussing on organisms at the bottom of marine food-webs (e.g. unicellular algae, microbiota). |
Bill Maher (M.App.Sci. 1977, Ph.D. 1981) is a professor in Environmental/Analytical Chemistry at the University of Canberra. His research interests are the biogeochemical cycling of trace metals, metalloids and nutrients in aquatic ecosystems, development of water quality and sampling guidelines and development of analytical procedures for measuring trace contaminants in water, sediment and biota. He is also director of the Ecochemistry Laboratory, Institute of Applied Ecology at the University of Canberra. He was awarded the RACI Analytical Divisions medal in 2002 and the RACI Environmental Chemistry Divisions medal in 2004. |
Simon Foster (B.Earth&LandSci. 2002, Hons 1st 2003, Ph.D. 2008) is an Assistant Professor in Environmental/Analytical Chemistry at the University of Canberra. He undertook Ph.D. studies in the Ecochemistry Laboratory, Institute of Applied Ecology at the University of Canberra. His research interests are in the cycling of trace metals and metalloids in organisms, and development and application of methods for the measurement of chemical species in environmental samples. |
Environmental Chemistry 12(2) 149-162 https://doi.org/10.1071/EN14124
Submitted: 1 July 2014 Accepted: 17 October 2014 Published: 25 March 2015
Environmental context. In marine environments, inorganic arsenic present in seawater is transformed to organoarsenic species, mainly arsenoribosides in algae and arsenobetaine in animals. These transformations decrease the toxicity of arsenic, yet the fate of arsenoribosides and arsenobetaine when marine organisms decompose is unknown. We review the current literature on the degradation of these organoarsenic species in marine systems detailing the drivers behind their degradation, and also discuss the environmental relevance of laboratory-based experiments.
Abstract. Despite arsenoribosides and arsenobetaine (AB) being the major arsenic species in marine macro-algae and animals they have never been detected in seawater. In all studies reviewed arsenoribosides from marine macro-algae were degraded to thio-arsenoribosides, dimethylarsinoylethanol (DMAE), dimethylarsenate (DMA), methylarsenate (MA) with arsenate (AsV) the final product of degradation. The use of different macro-algae species and different experimental microcosms did not influence the arsenoriboside degradation pathway. The use of different experimental approaches, however, did influence the rate and extent at which arsenoriboside degradation occurred. This was almost certainly a function of the complexity of the microbial community within the microcosm, with greater complexity resulting in rapid and more complete arsenoriboside degradation. AB from decomposing animal tissues is degraded to trimethylarsine oxide (TMAO) or dimethylarsenoacetate (DMAA), DMA and finally AsV. The degradation of AB unlike arsenoribosides occurs via a dual pathway with environmental or microbial community variability influencing the pathway taken. The environmental validity of different experimental approaches used to examine the fate of organoarsenic species was also reviewed. It was evident that although liquid culture incubation studies are cheap and reproducible they lack the ability to culture representative microbial communities. Microcosm studies that include sand and sediment are more environmentally representative as they are a better simulation of marine ecosystems and are also likely to facilitate complex microbial communities. An added benefit of microcosm studies is that they are able to be run in parallel with field-based research to provide a holistic assessment of the degradation of organoarsenic species in marine environments.
Additional keywords: arsenic cycling, arsenic species, arsenobetaine, arsenoribosides, macro-algae.
References
[1] J. M. Neff, Ecotoxicology of arsenic in the marine environment. Environ. Toxicol. Chem. 1997, 16, 917.| 1:CAS:528:DyaK2sXjtVGrt7Y%3D&md5=e8fa8167778497031e7b0f4fe3dad7f2CAS |
[2] M. O. Andreae, Distribution and speciation of arsenic in natural waters and some marine algae. Deep-Sea Res. 1978, 25, 391.
| Distribution and speciation of arsenic in natural waters and some marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXks1Cqsb4%3D&md5=b4a82b6eb515247af2d724ce6cffd80dCAS |
[3] J. S. Edmonds, K. A. Francesconi, Organoarsenic compounds in the marine environment, in Organometallic Compounds in the Environment (Ed. P. J. Craig) 2003, pp. 196–222 (Wiley: New York).
[4] W. Maher, S. Foster, F. Krikowa, Arsenic species in Australian temperate marine food chains. Mar. Freshwater Res. 2009, 60, 885.
| Arsenic species in Australian temperate marine food chains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGhs77F&md5=29a5d4d3cd183dd13a3b3b57a67b0fc5CAS |
[5] G. F. Riedel, J. G. Sanders, R. W. Osman, The effect of biological and physical disturbances on the transport of arsenic from contaminated estuarine sediments. Estuar. Coast. Shelf Sci. 1987, 25, 693.
| The effect of biological and physical disturbances on the transport of arsenic from contaminated estuarine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtVSrsbo%3D&md5=be09f6cfec3b61bf1a6e92e71a3cb97cCAS |
[6] M. Grotti, C. Lagomarsino, W. Goessler, K. A. Francesconi, Arsenic speciation in marine organisms from Antarctic coastal environments. Environ. Chem. 2010, 7, 207.
| Arsenic speciation in marine organisms from Antarctic coastal environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFeltbc%3D&md5=4b24bc5f31e5e7933d0694e9458d01f5CAS |
[7] S. Foster, W. Maher, F. Krikowa, Changes in proportions of arsenic species within an Ecklonia radiata food chain. Environ. Chem. 2008, 5, 176.
| Changes in proportions of arsenic species within an Ecklonia radiata food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlCrtrk%3D&md5=21828ed9baf58dff59ab0b5936fa0853CAS |
[8] S. Foster, W. Maher, E. Schmeisser, A. Taylor, F. Krikowa, S. Apte, Arsenic speciation in a rocky intertidal marine food chain in NSW, Australia, revisited. Environ. Chem. 2006, 3, 304.
| Arsenic speciation in a rocky intertidal marine food chain in NSW, Australia, revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVaksr4%3D&md5=0dba7233cfb904948dde7b5d0a29e538CAS |
[9] J. Kirby, W. Maher, Tissue accumulation and distribution of arsenic compounds in three marine fish species: relationship to trophic position. Appl. Organomet. Chem. 2002, 16, 108.
| Tissue accumulation and distribution of arsenic compounds in three marine fish species: relationship to trophic position.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Sku70%3D&md5=84677b80a69827aa70e7fb3bd915a65eCAS |
[10] J. Kirby, W. Maher, D. Spooner, Arsenic occurence and species in near-shore macroalgae-feeding marine animals. Environ. Sci. Technol. 2005, 39, 5999.
| Arsenic occurence and species in near-shore macroalgae-feeding marine animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVWit7g%3D&md5=41547f4854df4c055e69d227363e9b3eCAS | 16173556PubMed |
[11] W. A. Maher, S. D. Foster, A. M. Taylor, F. Krikowa, E. G. Duncan, A. A. Chariton, Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia. Environ. Chem. 2011, 8, 9.
| Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1GlsLg%3D&md5=c8515b0af9ebabdddb73f52d2d003055CAS |
[12] A. Price, W. Maher, J. Kirby, F. Krikowa, E. Duncan, A. Taylor, J. Potts, Distribution of arsenic species in an open seagrass ecosystem: relationship to trophic groups, habitats and feeding zones. Environ. Chem. 2012, 9, 77.
| 1:CAS:528:DC%2BC38Xis1amtb0%3D&md5=6105af259f1fd8d8bf43e402400718cbCAS |
[13] J. S. Edmonds, Y. Shibata, K. A. Francesconi, R. J. Rippington, M. Morita, Arsenic transformations in short marine food chains studies by HPLC-ICP MS. Appl. Organomet. Chem. 1997, 11, 281.
| Arsenic transformations in short marine food chains studies by HPLC-ICP MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis12qsr8%3D&md5=e5a2e5124d8eefa4106484471cd194acCAS |
[14] J. G. Sanders, R. W. Osman, G. F. Reidel, Pathways of arsenic uptake and incorporation in estuarine phytoplankton and the filterfeeding invertebrates Eurytemora affinis, Balanus improvisus and Crassostrea virginica. Mar. Biol. 1989, 103, 319.
| Pathways of arsenic uptake and incorporation in estuarine phytoplankton and the filterfeeding invertebrates Eurytemora affinis, Balanus improvisus and Crassostrea virginica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXnsVaisA%3D%3D&md5=a40a1cb8ae0be901e40b0b0c74f45c97CAS |
[15] A. A. Benson, R. E. Summons, Arsenic accumulated in Great Barrier Reef invertebrates. Science 1981, 211, 482.
| Arsenic accumulated in Great Barrier Reef invertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXpslCjug%3D%3D&md5=e070bc53eecec2494ef4f7fdddbf490dCAS | 7455685PubMed |
[16] D. W. Klumpp, P. J. Peterson, Chemical characteristics of arsenic in a marine food chain. Mar. Biol. 1981, 62, 297.
| Chemical characteristics of arsenic in a marine food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktlOksr0%3D&md5=96d1e1c9d8e7eef9b77762bb27fd55efCAS |
[17] F. Challenger, Biological methylation. Chem. Rev. 1945, 36, 315.
| Biological methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2MXisFGrtQ%3D%3D&md5=3e452e5d94e150699b3a16d605d0e490CAS |
[18] D. Thomson, W. Maher, S. Foster, Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia. Appl. Organomet. Chem. 2007, 21, 396.
| Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1yit7s%3D&md5=1f6501a501723e7d26f7a08a14882e1bCAS |
[19] R. Tukai, W. A. Maher, I. J. McNaught, M. J. Ellwood, M. Coleman, Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia. Mar. Freshwater Res. 2002, 53, 971.
| Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFamtQ%3D%3D&md5=9be40c319252c6ec796e8b495830a8e3CAS |
[20] M. Morita, Y. Shibata, Chemical form of arsenic in marine macroalgae. Appl. Organomet. Chem. 1990, 4, 181.
| Chemical form of arsenic in marine macroalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmvVGlsQ%3D%3D&md5=06e531099f40991c00e8ddd2f9c98013CAS |
[21] J. S. Edmonds, M. Morita, Y. Shibata, Isolation and identification of arsenic-containing ribofuranosides and inorganic arsenic from Japanese edible seaweed Hizikia fusiforme. J. Chem. Soc., Perkin Trans. 1 1987, 577.
| Isolation and identification of arsenic-containing ribofuranosides and inorganic arsenic from Japanese edible seaweed Hizikia fusiforme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlKmtLs%3D&md5=c39e2c99df879bcca0c30010a03711cbCAS |
[22] J. S. Edmonds, K. A. Francesconi, Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature 1981, 289, 602.
| Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVegt70%3D&md5=33553385d2b834d9d7a3b03cd7cd0315CAS |
[23] J. S. Edmonds, K. A. Francesconi, Arsenic-containing ribofuranosides: isolation from brown kelp Ecklonia radiata and nuclear magnetic resonance spectra. J. Chem. Soc., Perkin Trans. 1 1983, 2375.
| Arsenic-containing ribofuranosides: isolation from brown kelp Ecklonia radiata and nuclear magnetic resonance spectra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXitVCguw%3D%3D&md5=7a967263bd94b5176d59f76439e2786eCAS |
[24] K. A. Francesconi, J. S. Edmonds, Arsenic species in marine samples. Croat. Chem. Acta 1998, 71, 343.
| 1:CAS:528:DyaK1cXjvFWrt7o%3D&md5=06342693c3579725c10487b6c369c2d0CAS |
[25] K. Hanaoka, H. Yamamoto, K. Kawashima, S. Tagawa, T. Kaise, Ubiquity of arsenobetaine in marine animals and degradation of arsenobetaine by sedimentary micro-organisms. Appl. Organomet. Chem. 1988, 2, 371.
| Ubiquity of arsenobetaine in marine animals and degradation of arsenobetaine by sedimentary micro-organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmt1Ojsrg%3D&md5=2e1b881fe010b303f4430e182515f33dCAS |
[26] J. S. Edmonds, K. A. Francesconi, The origin of arsenobetaine in marine animals. Appl. Organomet. Chem. 1988, 2, 297.
| The origin of arsenobetaine in marine animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmt1Crs7g%3D&md5=11389b54863f6292feece914b46b32fdCAS |
[27] K. A. Francesconi, D. Kuehnelt, Arsenic compounds in the environment, in Environmental Chemistry of Arsenic (Ed. W. T. Frankenberger) 2002, pp. 51–94 (Marcel Dekker, Inc.: New York).
[28] K. Hanaoka, H. Koga, S. Tagawa, T. Kaise, Degradation of arsenobetaine to inorganic arsenic by the micro-organisms occuring in the suspended substances. Comp. Biochem. Physiol. 1992, 101B, 595.
| 1:CAS:528:DyaK38XitlWmtbg%3D&md5=0af5d5b01afef40c0e009ab22ad18d30CAS |
[29] P. Pengprecha, M. Wilson, A. Raab, J. Feldmann, Biodegradation of arsenosugars in marine sediment. Appl. Organomet. Chem. 2005, 19, 819.
| Biodegradation of arsenosugars in marine sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFKku70%3D&md5=51da9feac41d332fa72a93de95db32ccCAS |
[30] S. Foster, W. Maher, Degradation of arsenoribosides from marine macroalgae in simulated rock pools, in Arsenic in Geosphere and Human Diseases (Eds J. S. Jean, J. Bundschuh, and P. Battacharya) 2010, pp. 230–232 (CRC Press: London).
[31] D. J. H. Phillips, The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments – a review. Environ. Pollut. 1977, 13, 281.
| The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXmtVKhsbw%3D&md5=e9221aeea169c2168ae53987bb0e1ac1CAS |
[32] H. Higgins, D. Mackey, Role of Ecklonia radiata (C. Ag.) J. Agardh in determining trace metal availability in coastal waters. II. Trace metal speciation. Mar. Freshwater Res. 1987, 38, 317.
| Role of Ecklonia radiata (C. Ag.) J. Agardh in determining trace metal availability in coastal waters. II. Trace metal speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlvVaqu7o%3D&md5=68a7bd29f80f9a769e6a86fbe09b90ceCAS |
[33] H. Higgins, D. Mackey, Role of Ecklonia radiata (C. Ag.) J. Agardh in determining trace metal availability in coastal waters. I. Total trace metals. Mar. Freshwater Res. 1987, 38, 307.
| Role of Ecklonia radiata (C. Ag.) J. Agardh in determining trace metal availability in coastal waters. I. Total trace metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlvVaqu70%3D&md5=0de1d65653fd04977fd57ff7ea866862CAS |
[34] H. Castlehouse, C. Smith, A. Raab, C. Deacon, A. A. Meharg, J. Feldmann, Biotransformation and accumulation of arsenic in soil amended with seaweed. Environ. Sci. Technol. 2003, 37, 951.
| Biotransformation and accumulation of arsenic in soil amended with seaweed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslyltA%3D%3D&md5=59985a66fdb97d80a90fd04fcad6ea69CAS | 12666926PubMed |
[35] J. W. Hertrampf, F. Piedad-Pascual, Handbook on Ingredients for Aquaculture Feeds 2003 (Kluwer Academic: Dordrecht, Netherlands).
[36] K. Hanaoka, S. Hasegawa, N. Kawabe, S. Tagawa, T. Kaise, Aerobic and anaerobic degradation of several arsenicals by sedimentary micro-organisms. Appl. Organomet. Chem. 1990, 4, 239.
| Aerobic and anaerobic degradation of several arsenicals by sedimentary micro-organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvVKmsQ%3D%3D&md5=9572623c39836330d28bff156f0ab0d7CAS |
[37] K. Hanaoka, T. Kaise, N. Kai, Y. Kawasaki, H. Miyasita, K. Kakimoto, S. Tagawa, Arsenobetaine-decomposing ability of marine microorganisms occurring in particles collected at depths of 1100 and 3500 meters. Appl. Organomet. Chem. 1997, 11, 265.
| Arsenobetaine-decomposing ability of marine microorganisms occurring in particles collected at depths of 1100 and 3500 meters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis12ru7c%3D&md5=08cd1d71f1b1c4719c23b22a821fbffeCAS |
[38] K. Hanaoka, S. Tagawa, T. Kaise, The fate of organoarsenic compounds in marine ecosystems. Appl. Organomet. Chem. 1992, 6, 139.
| The fate of organoarsenic compounds in marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xis1ajurY%3D&md5=7f4c5c114983b4cdcb9ae45f66e9c0a7CAS |
[39] K. Hanaoka, K. Uchida, S. Tagawa, T. Kaise, Uptake and degradation of arsenobetaine by the microorganisms occuring in sediments. Appl. Organomet. Chem. 1995, 9, 573.
| Uptake and degradation of arsenobetaine by the microorganisms occuring in sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsleit7Y%3D&md5=847b46d9abd0dad555fd6d012ae646b6CAS |
[40] K. Hanaoka, K. Ueno, S. Tagawa, T. Kaise, Degradation of arsenobetaine by micro-organisms associated with the marine macro algae, Monostroma nitidum and Hizikia fusiforme. Comp. Biochem. Physiol. 1989, 94B, 379.
| 1:CAS:528:DyaK3cXjtlWnsA%3D%3D&md5=58f3fc5d0362cadfabbae741eacfd3daCAS |
[41] S. Khokiattiwong, W. Goessler, S. N. Pedersen, R. Cox, K. A. Francesconi, Dimethylarsinoylacetate from microbial demethylation of arsenobetaine in seawater. Appl. Organomet. Chem. 2001, 15, 481.
| Dimethylarsinoylacetate from microbial demethylation of arsenobetaine in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFOqs7g%3D&md5=e280fd11b1ce46d6ddf431e3d652a43dCAS |
[42] R. Jenkins, A. Ritchie, J. Edmonds, W. Goessler, N. Molenat, D. Kuehnelt, C. Harrington, P. Sutton, Bacterial degradation of arsenobetaine via dimethylarsinoylacetate. Arch. Microbiol. 2003, 180, 142.
| Bacterial degradation of arsenobetaine via dimethylarsinoylacetate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1ygs7Y%3D&md5=ca335d366776546c2933d395f5fa0012CAS | 12827219PubMed |
[43] H. Ki, T. Kaise, Microbial degradation of arsenobetaine accumulated in marine animals. J. Nat. Fish. U. 1999, 48, 41.
[44] J. S. Edmonds, K. A. Francesconi, J. A. Hansen, Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine fauna. Experientia 1982, 38, 643.
| Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine fauna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xks12js7s%3D&md5=09b49fd62d71d8d2d64a87490de732d6CAS |
[45] J. Navratilova, G. Raber, S. J. Fisher, K. A. Francesconi, Arsenic cycling in marine systems: degradation of arsenosugars to arsenate in decomposing algae, and preliminary evidence for the formation of recalcitrant arsenic. Environ. Chem. 2011, 8, 44.
| Arsenic cycling in marine systems: degradation of arsenosugars to arsenate in decomposing algae, and preliminary evidence for the formation of recalcitrant arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1GlsLc%3D&md5=1eaf1c1822c0a44201b740cbb2d35d2bCAS |
[46] E. G. Duncan, W. A. Maher, S. D. Foster, K. M. Mikac, F. Krikowa, A. Florance, Arsenoriboside degradation in marine systems: the use of bacteria culture incubation experiments as model systems. Chemosphere 2014, 95, 635.
| Arsenoriboside degradation in marine systems: the use of bacteria culture incubation experiments as model systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWjtbrP&md5=b0e706cf99c2d0ad7d7823580b69187aCAS | 24025537PubMed |
[47] K. A. Francesconi, R. V. Stick, J. S. Edmonds, An arsenic-containing nucleoside from the kidney of the giant clam, Tridacna maxima. J. Chem. Soc. Chem. Commun. 1991, 928.
| An arsenic-containing nucleoside from the kidney of the giant clam, Tridacna maxima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1ylu7k%3D&md5=56b1683c7b1ef6790a5fb6763401e687CAS |
[48] K. A. Francesconi, J. S. Edmonds, R. V. Stick, Arsenic compounds from the kidney of the giant clam Tridacna maxima: isolation and identification of an arsenic-containing nucleoside. J. Chem. Soc., Perkin Trans. 1 1992, 1349.
| Arsenic compounds from the kidney of the giant clam Tridacna maxima: isolation and identification of an arsenic-containing nucleoside.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvVOju7w%3D&md5=bec0bc8873e5c2258628958829c635e7CAS |
[49] J. S. Edmonds, K. A. Francesconi, P. C. Healy, A. H. White, Isolation and crystal structure of an arsenic-containing sugar sulphate from the kidney of the giant clam, Tridacna maxima. X-Ray crystal structure of (2S)-3-[5-deoxy-5-(dimethylarsinoyl)-[small beta]-D-ribofuranosyloxy]-2-hydroxypropyl hydrogen sulphate. J. Chem. Soc., Perkin Trans. 1 1982, 2989.
| Isolation and crystal structure of an arsenic-containing sugar sulphate from the kidney of the giant clam, Tridacna maxima. X-Ray crystal structure of (2S)-3-[5-deoxy-5-(dimethylarsinoyl)-[small beta]-D-ribofuranosyloxy]-2-hydroxypropyl hydrogen sulphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXht1eisr8%3D&md5=175ea8df7dc8b90a062fc25b4592e3d5CAS |
[50] V. Nischwitz, S. A. Pergantis, First report on the detection and quantification of arsenobetaine in extracts of marine algae using HPLC-ES-MS/MS. Analyst (Lond.) 2005, 130, 1348.
| First report on the detection and quantification of arsenobetaine in extracts of marine algae using HPLC-ES-MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWhsr%2FO&md5=2d482c9335033b904a4480ed296838e9CAS |
[51] M. Grotti, F. Soggia, C. Lagomarsino, W. Goessler, K. A. Francesconi, Arsenobetaine is a significant arsenical constituent of the red Antarctic alga Phyllophora antarctica. Environ. Chem. 2008, 5, 171.
| Arsenobetaine is a significant arsenical constituent of the red Antarctic alga Phyllophora antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlCrt7k%3D&md5=acf1f29613de7a529cef93e4bdf19fe3CAS |
[52] J. Meier, N. Kienzl, W. Goessler, K. A. Francesconi, The occurence of thio-arsenosugars in some samples of marine algae. Environ. Chem. 2005, 2, 304.
| The occurence of thio-arsenosugars in some samples of marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12gt7zO&md5=2c7fd42a8c39432b8e915b2948fe6eedCAS |
[53] B. Planer-Friedrich, J. London, R. B. McCleseky, D. K. Nordstrom, D. Wallschlager, Thioarsenates in geothermal waters on Yellowstone National Park: determination, preservation and geochemical importance. Environ. Sci. Technol. 2007, 41, 5245.
| Thioarsenates in geothermal waters on Yellowstone National Park: determination, preservation and geochemical importance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsV2lt7s%3D&md5=7c26d2decd7494bd9b8c7d52e915ce07CAS | 17822086PubMed |
[54] E. Schmeisser, R. Raml, K. A. Francesconi, D. Kuehnelt, A.-L. Lindberg, C. Soros, W. Goessler, Thio arsenosugars identified as natural constituents of mussels by liquid chromatography-mass spectrometry. Chem. Commun. 2004, 2004, 1824.
[55] R. V. Cooney, R. O. Mumma, A. A. Benson, Arsoniumphospholipid in algae. Proc. Natl. Acad. Sci. USA 1978, 75, 4262.
| Arsoniumphospholipid in algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhvFShtQ%3D%3D&md5=e424ee224ed4d498a9998f63074c468bCAS | 16592562PubMed |
[56] M. Morita, Y. Shibata, Isolation and identification of arseno-lipid from a brown alga undaria pinnatifida (wakame). Chemosphere 1988, 17, 1147.
| Isolation and identification of arseno-lipid from a brown alga undaria pinnatifida (wakame).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvVOlt78%3D&md5=80c1d36d94a060c4d6563890105630c8CAS |
[57] A. Raab, C. Newcombe, D. Pitton, R. Ebel, J. Feldmann, Comprehensive analysis of lipophilic arsenic species in a brown alga (Saccharina latissima). Anal. Chem. 2013, 85, 2817.
| Comprehensive analysis of lipophilic arsenic species in a brown alga (Saccharina latissima).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1ehsr0%3D&md5=325414c75c20e013339d1d903a22979eCAS | 23394220PubMed |
[58] S. García-Salgado, G. Raber, R. Raml, C. Magnes, K. A. Francesconi, Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae. Environ. Chem. 2012, 9, 63.
| Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae.Crossref | GoogleScholarGoogle Scholar |
[59] V. Sele, J. J. Sloth, A.-K. Lundebye, E. H. Larsen, M. H. G. Berntssen, H. Amlund, Arsenolipids in marine oils and fats: a review of occurrence, chemistry and future research needs. Food Chem. 2012, 133, 618.
| Arsenolipids in marine oils and fats: a review of occurrence, chemistry and future research needs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivV2msb0%3D&md5=86bf6a94809223d8a068cf66bc34e9adCAS |
[60] J. Kirby, W. Maher, Measurement of water-soluble arsenic species in freeze-dried marine animal tissues by microwave-assisted extraction and HPLC-ICP-MS. J. Anal. At. Spectrom. 2002, 17, 838.
| Measurement of water-soluble arsenic species in freeze-dried marine animal tissues by microwave-assisted extraction and HPLC-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVKhsbs%3D&md5=45d6263aca1194c759eee84edbe298a1CAS |
[61] E. G. Duncan, W. A. Maher, S. D. Foster, F. Krikowa, Total arsenic concentrations and arsenic species present in naturally decomposing Ecklonia radiata tissues collected from various marine habitats. Appl. Psychol. 2014, 26, 2193.
| 1:CAS:528:DC%2BC2cXhvVentL%2FK&md5=8a98f2eda7fe39408044dd66abe534dbCAS |
[62] E. Duncan, B. Maher, S. Foster, F. Krikowa, K. Mikac, The degradation of arsenoribosides from Ecklonia radiata tissues decomposed in natural and microbially manipulated microcosms. Environ. Chem. 2014, 11, 289.
| The degradation of arsenoribosides from Ecklonia radiata tissues decomposed in natural and microbially manipulated microcosms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVajsL3I&md5=7ba914b99327426a845efa98d3616602CAS |
[63] A. A. Ojo, A. Onasanya, Closed anaerobic biotransformation products of organoarsenic compounds in Fucus distichus. ISRN Environmental Chemistry. 2013, 2013, 1.
| Closed anaerobic biotransformation products of organoarsenic compounds in Fucus distichus.Crossref | GoogleScholarGoogle Scholar |
[64] P. J. Ralph, D. A. Morrison, A. Addison, A quantitative study of the patterns of morphological variation within Hormosira banksii (Turner) Decaisne (Fucales: Phaeophyta) in south-eastern Australia. J. Exp. Mar. Biol. Ecol. 1998, 225, 285.
| A quantitative study of the patterns of morphological variation within Hormosira banksii (Turner) Decaisne (Fucales: Phaeophyta) in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |
[65] K. A. Smart, H. L. Smart, C. R. Jackson, The effects of fine scale environmental variation on microbial community structure and functioning in aquatic environments, in Environmental Microbiology Research Trends (Ed. G. V. Kurladze) 2008, pp. 167–190 (Nova Science Publishers: New York).
[66] T. Kunito, R. Kubota, J. Fujihara, T. Agusa, S. Tanabe, Arsenic in marine mammals, seabirds and sea turtles, in Reviews of Environmental Contamination and Toxicity (Ed. D. W. Whitacre) 2008, pp. 32–61 (Springer: New York).
[67] K. Hanaoka, S. Tagawa, T. Kaise, Conversion of arsenobetaine to dimethylarsinic acid by bacteria isolated from coastal sedmient. Appl. Organomet. Chem. 1991, 5, 435.
| Conversion of arsenobetaine to dimethylarsinic acid by bacteria isolated from coastal sedmient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmslGmsLg%3D&md5=65d357667cea7e819c916c0212d8d4faCAS |
[68] D. Tilman, S. S. Kilham, Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. J. Phycol. 1976, 12, 375.
| 1:CAS:528:DyaE2sXmvVWltg%3D%3D&md5=df69d9b1361cc0b247a5ea64f45e9e98CAS |
[69] E. Hörnström, Toxicity tests with algae – a discussion on the batch Method. Ecotoxicol. Environ. Saf. 1990, 20, 343.
| Toxicity tests with algae – a discussion on the batch Method.Crossref | GoogleScholarGoogle Scholar | 2090447PubMed |
[70] E. Armstrong, L. Yan, K. G. Boyd, P. C. Wright, J. G. Burgess, The symbiotic role of marine microbes on living surfaces. Hydrobiologia 2001, 461, 37.
| The symbiotic role of marine microbes on living surfaces.Crossref | GoogleScholarGoogle Scholar |
[71] P. R. Jensen, C. A. Kauffman, W. Fenical, High recovery of culturable bacteria from the surfaces of marine algae. Mar. Biol. 1996, 126, 1.
| High recovery of culturable bacteria from the surfaces of marine algae.Crossref | GoogleScholarGoogle Scholar |
[72] J. A. Downing, Marine nitrogen: phosphorus stoichiometry and the global N:P cycle. Biogeochemistry 1997, 37, 237.
| Marine nitrogen: phosphorus stoichiometry and the global N:P cycle.Crossref | GoogleScholarGoogle Scholar |
[73] I. Joint, M. Mühling, J. Querellou, Culturing marine bacteria – an essential prerequisite for biodiscovery. Microb. Biotechnol. 2010, 3, 564.
| Culturing marine bacteria – an essential prerequisite for biodiscovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOns7%2FP&md5=f13c51485320d02da5f0a93f76e5b9f8CAS | 21255353PubMed |
[74] K. G. Boyd, D. R. Adams, J. G. Burgess, Antibacterial and repellent activities of marine bacteria associated with algal surfaces. Biofouling 1999, 14, 227.
| Antibacterial and repellent activities of marine bacteria associated with algal surfaces.Crossref | GoogleScholarGoogle Scholar |
[75] L. Bernard, H. Schäfer, F. Joux, C. Courties, G. Muyzer, P. Lebaron, Genetic diversity of total, active and culturable marine bacteria in coastal seawater. Aquat. Microb. Ecol. 2000, 23, 1.
| Genetic diversity of total, active and culturable marine bacteria in coastal seawater.Crossref | GoogleScholarGoogle Scholar |
[76] R. E. Macur, C. R. Jackson, L. M. Botero, T. R. McDermott, W. P. Inskeep, Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ. Sci. Technol. 2004, 38, 104.
| Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOmt7w%3D&md5=bc5d2b2b768d06108e9642c30f49f82cCAS | 14740724PubMed |
[77] U. Arroyo-Abad, J. Mattusch, S. Mothes, M. Möder, R. Wennrich, M. P. Elizalde-González, F.-M. Matysik, Detection of arsenic-containing hydrocarbons in canned cod liver tissue. Talanta 2010, 82, 38.
| Detection of arsenic-containing hydrocarbons in canned cod liver tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVyktbo%3D&md5=f925b5100ba31bf68ff50e60df07558dCAS | 20685432PubMed |
[78] A. Rumpler, J. S. Edmonds, M. Katsu, K. B. Jensen, W. Goessler, G. Raber, H. Gunnlaugsdottir, K. A. Francesconi, Arsenic-containing long-chain fatty acids in cod-liver oil: a result of biosynthetic infidelity? Angew. Chem. Int. Ed. 2008, 47, 2665.
| Arsenic-containing long-chain fatty acids in cod-liver oil: a result of biosynthetic infidelity?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFejsL4%3D&md5=2aa5c6b69565bd290223aa10d11a3a49CAS |