Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Dissolution of metal and metal oxide nanoparticles under natural freshwater conditions

Niksa Odzak A B , David Kistler A , Renata Behra A and Laura Sigg A
+ Author Affiliations
- Author Affiliations

A Eawag, Swiss Federal Institute of Aquatic Science & Technology, Department Environmental Toxicology (Utox), CH-8600 Dübendorf, Switzerland.

B Corresponding author. Email: odzak@eawag.ch

Environmental Chemistry 12(2) 138-148 https://doi.org/10.1071/EN14049
Submitted: 6 March 2014  Accepted: 19 May 2014   Published: 15 September 2014

Environmental context. Engineered nanomaterials (e.g. silver, zinc oxide and copper oxide) are being widely used in many consumer products such as cosmetics, food packaging and textiles. During their usage and treatment, they will be released to natural waters and partly dissolve, depending on the water type and nanomaterial characteristics. These nanomaterials may thus have some toxic effects to aquatic organisms and indirectly to humans because of higher concentrations of dissolved silver, zinc and copper in natural waters.

Abstract. The dissolution of some widely used nanoparticles (NPs), Ag (citrate coated), ZnO, CuO and Cu-carbon coated (Cu/C), has been studied over a period of 9 days in five different natural waters: wastewater treatment plant effluent (WWTP Dübendorf) and lakes Greifen, Lucerne, Gruère and Cristallina. These waters differ in ionic strength, pH and dissolved organic carbon (DOC). The dissolved fraction of metals from NPs was determined using DGT (diffusion gradients in thin films) and ultrafiltration (UF). ZnO-NPs and CuO-NPs dissolved to a large extent in all waters, whereas the dissolved fraction was much smaller in the case of Cu/C and Ag-NPs. All NPs dissolved to a larger extent in water from Lake Cristallina with low pH, low ionic strength and low DOC. Ag-NP dissolution was favoured at low ionic strength and low pH, whereas dissolution of CuO-NPs was mostly dependent on pH. Cu/C-NPs strongly agglomerated and sedimented and yielded low dissolved Cu concentrations. DGT and UF produced similar results, although these two methods differ in the measurement time scale. The results of this study indicate that dissolution is an important process for these NPs under conditions of natural waters or wastewaters.


References

[1]  B. P. Barnett, A. Arepally, P. V. Karmarkar, D. Qian, W. D. Gilson, P. Walczak, V. Howland, L. Lawler, C. Lauzon, M. Stuber, D. L. Kraitchman, J. W. M. Bulte, Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat. Med. 2007, 13, 986.
Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1CjsLY%3D&md5=26e95a6af30dcfae499dcdc81b2034a0CAS | 17660829PubMed |

[2]  Y. Dong, S. S. Feng, In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. Biomater 2007, 28, 4154.
In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Kms7s%3D&md5=cbc888ca5a7e7444d82c2f8a44559f49CAS |

[3]  O. V. Salata, Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2004, 2, 3.
Applications of nanoparticles in biology and medicine.Crossref | GoogleScholarGoogle Scholar |

[4]  M. Lens, Use of fullerenes in cosmetics. Recent Pat. Biotechnol. 2009, 3, 118.
Use of fullerenes in cosmetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlWrtrY%3D&md5=03208cba23b0afe3680cd508a7c0f702CAS | 19519567PubMed |

[5]  R. H. Müller, M. Radtke, S. A. Wissing, Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparation. Adv. Drug Delivery Rev. 2002, 54, S131.
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparation.Crossref | GoogleScholarGoogle Scholar |

[6]  S. N. Pavasupree, M. Nakajima, Y. Suzuki, S. Yoshikawa, Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. J. Photochem. Photobiol. 2006, 184, 163.
Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOns7rJ&md5=2a5bb326abab0e106d6cf8a9d7c95ffbCAS |

[7]  D. Wei, H. E. Unalan, D. X. Han, Q. X. Zhang, L. Niu, G. Amaratunga, T. A. Ryhanen, Solid-state dye-sensitized solar cell based on a novel ionic liquid gel and ZnO nanoparticles on a flexible polymer substrate. Nanotechnology 2008, 19, 424006.
Solid-state dye-sensitized solar cell based on a novel ionic liquid gel and ZnO nanoparticles on a flexible polymer substrate.Crossref | GoogleScholarGoogle Scholar | 21832666PubMed |

[8]  W. Tungittiplakorn, L. W. Lion, C. Cohen, J. Y. Kim, Engineered polymeric nanoparticles for soil remediation. Environ. Sci. Technol. 2004, 38, 1605.
Engineered polymeric nanoparticles for soil remediation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Krtg%3D%3D&md5=2b08f490433b595466861aca1259c3c9CAS | 15046367PubMed |

[9]  W. X. Zhang, Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 2003, 5, 323.
Nanoscale iron particles for environmental remediation: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFSiu7w%3D&md5=73c3b7c539d3c6dff9fc75f2916441bfCAS |

[10]  A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, P. N. Prasad, Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine. J. Phys. Chem. 2008, 112, 10 721.
| 1:CAS:528:DC%2BD1cXnslOgt70%3D&md5=97ae956cbf7ba20a25e5ad89373ceeb2CAS |

[11]  National Science Foundation, Nanotechnology research directions for societal needs in 2020: retrospective and outlook summary, in Science Policy Reports (Eds M. Roco, C. Mirkin, M. Hersan) 2010, pp. 1–28 (Springer: New York).

[12]  K. Schmid, M. Riediker, Use of nanoparticles in Swiss industry: a targeted survey. Environ. Sci. Technol. 2008, 42, 2253.
Use of nanoparticles in Swiss industry: a targeted survey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlOms7Y%3D&md5=8fed60fa7da672e4eb1b48ea624ea13bCAS | 18504950PubMed |

[13]  M. Auffan, J. Rose, M. R. Wiesner, J. Y. Bottero, Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 2009, 157, 1127.
Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1eltbk%3D&md5=46edfd73d05a3ba9f191285cde7bc1e3CAS | 19013699PubMed |

[14]  N. C. Mueller, B. Nowack, Exposure modelling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008, 42, 4447.
Exposure modelling of engineered nanoparticles in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslOju7k%3D&md5=ceb3a3da8f5c13416742e68a914e5924CAS | 18605569PubMed |

[15]  M. R. Wiesner, J. Y. Bottero, Nanotechnology and the environment, in Environmental Nanotechnology – Applications and Impacts of Nano-materials (Eds M. R. Wiesner, J. Y. Bottero) 2007, pp. 3–15 (McGraw Hill: New York).

[16]  M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 2006, 40, 4336.
Assessing the risks of manufactured nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFWgsb4%3D&md5=658e5cb90b427a2f73b2955afad59c89CAS | 16903268PubMed |

[17]  M. A. A. Schoonen, C. A. Cohn, E. Roemer, R. Laffers, S. R. Simon, T. O'Riordan, Mineral-induced formation of reactive oxygen species. Med. Mineraol. Geochem. 2006, 64, 179.
Mineral-induced formation of reactive oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslKgug%3D%3D&md5=f9e0b6987cf729ce7442ec609bfc946dCAS |

[18]  R. D. Handy, R. Owen, E. Valsami-Jones, The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicol. 2008, 17, 315.
The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKrsbo%3D&md5=a62bb12c9914b0dad31c7f2e5f71330bCAS |

[19]  S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
Nanomaterials in the environment: behavior, fate, bioavailability, and effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVersLjJ&md5=66bb5f70ddef5f791cd00b10e5afac24CAS | 19086204PubMed |

[20]  D. M. Templeton, F. Ariese, R. Cornelis, L.-G. Danielsson, H. Muntau, H. P. Van Leeuwen, R. Lobinski, Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches. Pure Appl. Chem. 2000, 72, 1453.
Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Gq&md5=eedc1444b3896b28ad01a0a7610de184CAS |

[21]  C. Coutris, T. Hertel-Aas, E. Lapied, E. J. Joner, D. H. Oughton, Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 2012, 6, 186.
Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2ntrc%3D&md5=d540612701da40d9cd17aa5d800de467CAS | 21486186PubMed |

[22]  R. Ma, C. Levard, S. M. Marinakos, Y. W. Cheng, J. Liu, F. M. Michel, G. E. Brown, G. V. Lowry, Size-controlled dissolution of organic-coated silver nanoparticles. Environ. Sci. Technol. 2012, 46, 752.
Size-controlled dissolution of organic-coated silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGqsrnF&md5=5af3c81d2b7d3a31dca335e610d1083bCAS | 22142034PubMed |

[23]  E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, R. Behra, Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42, 8959.
Toxicity of silver nanoparticles to Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOqt7nO&md5=a63fd345e6343085da39fe17c6c9ce7bCAS | 19192825PubMed |

[24]  T. S. Radniecki, D. P. Stankus, A. Neigh, J. A. Nason, L. Semprini, Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Chemosphere 2011, 85, 43.
Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKjtbfE&md5=7e371e344b3be40328429cc38eb75440CAS | 21757219PubMed |

[25]  W. Davison, H. Zhang, In situ speciation measurements of trace components in natural-waters using thin-film gels. Nature 1994, 367, 546.
In situ speciation measurements of trace components in natural-waters using thin-film gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsVemtrc%3D&md5=7f01581ce764d20b25b9eae66999bfd7CAS |

[26]  W. Davison, H. Zhang, Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics. Environ. Chem. 2012, 9, 1.
Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1amtbs%3D&md5=1591450476b14275778c5135e50da0beCAS |

[27]  N. Odzak, D. Kistler, H. B. Xue, L. Sigg, In situ trace metal speciation in a eutrophic lake using the technique of diffusion gradients in thin films (DGT). Aquat. Sci. 2002, 64, 292.
In situ trace metal speciation in a eutrophic lake using the technique of diffusion gradients in thin films (DGT).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVSrt7c%3D&md5=e7e7472d3587ed99275040bb53f1c671CAS |

[28]  L. Sigg, F. Black, J. Buffle, J. Cao, R. Cleven, W. Davison, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, M. Martin, S. Nöel, J. Nur, N. Odzak, J. Puy, W. van Riemsdijk, E. Temminghoff, M.-L. Tercier-Waeber, S. Toepperwien, R. M. Town, E. Unsworth, K. W. Warnken, L. Weng, H. Xue, H. Zhang, Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ. Sci. Technol. 2006, 40, 1934.
Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yhsLk%3D&md5=f7f9fc3fda896bc31c32dd8706d5d371CAS | 16570618PubMed |

[29]  H. Zhang, W. Davison, Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal. Chem. 1995, 67, 3391.
Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslKgtrc%3D&md5=e0fcb9e8e6a3c8266970f72de4a797a9CAS |

[30]  N. Odzak, D. Kistler, R. Behra, L. Sigg, Dissolution of metal and metal oxide nanoparticles in aqueous media. Environ. Pollut. 2014, 191, 132.
Dissolution of metal and metal oxide nanoparticles in aqueous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslKqsL8%3D&md5=43c2472438f0eb3b2912fa11bec189e4CAS | 24832924PubMed |

[31]  G. E. Batley, S. C. Apte, J. L. Stauber, Speciation and bioavailabillity of trace metals in water: progress since 1982. Aust. J. Chem. 2004, 57, 903.
Speciation and bioavailabillity of trace metals in water: progress since 1982.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Sjsr8%3D&md5=cb24c5e443d8d7d9d7ff219ec4a8449eCAS |

[32]  P. G. C. Campbell, Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. R. Turner) 1995, pp. 45–102 (Wiley: Chichester, UK).

[33]  P. G. C. Campbell, O. Errécalde, C. Fortin, V. P. Hiriart-Baer, B. Vigneault, Metal bioavailability to phytoplankton – applicability of the biotic ligand model. Comp. Biochem. Physiol. Part Toxicol. Pharmacol. 2002, 133, 189.
Metal bioavailability to phytoplankton – applicability of the biotic ligand model.Crossref | GoogleScholarGoogle Scholar |

[34]  L. Sigg, R. Behra, Speciation and bioavailability of trace metals in freshwater environments, in Biogeochemistry, Availability, and Transport of Metals in the Environment (Eds A. Sigel, H. Sigel, R. K. O. Sigel) 2005, pp. 47–73 (Taylor & Francis Group: Boca Raton, FL).

[35]  F. Piccapietra, C. Gil-Allué, L. Sigg, R. Behra, Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ. Sci. Technol. 2012, 46, 7390.
Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvF2ktrc%3D&md5=2e912bf396a6a4755775ec8e01ada5c2CAS | 22667990PubMed |

[36]  Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, P. J. J. Alvarez, Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271.
Negligible particle-specific antibacterial activity of silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVKktLc%3D&md5=7086a280ce2efac83f8510779a285fd1CAS | 22765771PubMed |

[37]  F. Piccapietra, L. Sigg, R. Behra, Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater. Environ. Sci. Technol. 2012, 46, 818.
Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCmsrvI&md5=a6ca8df72455d5448f3f05e642aec839CAS | 22133031PubMed |

[38]  G. A. Sotiriou, A. Meyer, J. T. N. Knijnenburg, S. Panke, S. E. Pratsinis, Quantifying the origin of released Ag+ ions from nanosilver. Langmuir 2012, 28, 15 929.
Quantifying the origin of released Ag+ ions from nanosilver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWks7jN&md5=3ee9713752a6c01a0ece3889ad9cc321CAS |

[39]  H. Zhang, Practical Guide for Making Diffusive Gel and Chelex Gel 2004 (DGT Research Ltd: Lancaster, UK).

[40]  H. Zhang, W. Davison, Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal. Chim. Acta 1999, 398, 329.
Diffusional characteristics of hydrogels used in DGT and DET techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFeqtLk%3D&md5=c90b7ac0d42a706cf919c89dd3c1655bCAS |

[41]  J. P. Gustafsson, Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model. J. Colloid Interface Sci. 2001, 244, 102.
Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1KisLw%3D&md5=c17d1ca37696e340e9ed673f5af5ff1aCAS |

[42]  Z.-M. Xiu, J. Ma, P. J. J. Alvarez, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol. 2011, 45, 9003.
Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ags77I&md5=21bcd55abf75149ae1c6ade56f89ce2eCAS | 21950450PubMed |

[43]  X. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J. N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol. 2012, 46, 1119.
Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFygt7vN&md5=29f8517bdb955eb83c1aeb28945039f7CAS | 22148238PubMed |

[44]  Z. Chen, P. G. C. Campbell, C. Fortin, Silver binding by humic acid as determined by equilibrium ion-exchange and dialysis. J. Phys. Chem. 2012, 116, 6532.
Silver binding by humic acid as determined by equilibrium ion-exchange and dialysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVGhsr0%3D&md5=4f032a7d3332f849ec977f1ef59a7fb2CAS |

[45]  C. Levard, S. Mitra, T. Yang, A. D. Jew, A. R. Badireddy, G. V. Lowry, G. E. Brown, Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ. Sci. Technol. 2013, 47, 5738.
Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvF2js70%3D&md5=360a91aa4aabb8a8673bba0553a874dcCAS | 23641814PubMed |

[46]  E. Tipping, Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3.
Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=5713777c9b890be10b9003a0b7744eadCAS |

[47]  C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900.
Environmental transformations of silver nanoparticles: impact on stability and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGjt7o%3D&md5=4dae6e02caa0d9ab4a861e91882a1b9dCAS | 22339502PubMed |