Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Early history and rationale for outdoor chamber work at the University of North Carolina

Harvey E. Jeffries A B , Richard M. Kamens A and Kenneth Sexton A
+ Author Affiliations
- Author Affiliations

A Department of Environmental Science and Engineering Gillings School of Global Public Health University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA.

B Corresponding author. Email: harvey@unc.edu

Environmental Chemistry 10(4) 349-364 https://doi.org/10.1071/EN13901
Published: 28 August 2013

Environmental context. Imagine in 1968 having to tell the largest cities in the US that they would have to spend billions of dollars to reduce human exposure to a gas in their air that no one emitted and that no one knew for sure how it came to be there. This history recalls how scientists and policy makers met this challenge so that by 1985 effective programs were in place.

Abstract. The University of North Carolina (UNC) outdoor chamber facility was established in 1972. The chamber produces reliable and interpretable results using ambient sunlight, temperature and weather, providing an effective physical model system for learning about atmospheric chemistry. This article recounts the 40-year history of the chamber facility, from the early days in understanding ozone–precursor relationship to the latest in studying gas and particulate toxicities on human lung cells.


References

[1]  A. Stern, Air Pollution 1968 (Academic Press: New York).

[2]  Environmental Protection Agency Fed. Register 1971, 36, 8187.[30 April 1971]

[3]  P. Leighton, Photochemistry of Air Pollution 1961 (Academic Press: New York).

[4]  Environmental Protection Agency Fed. Register 1971, 36, 115 486-15 506.[14 August 1971]

[5]  B. Dimitriades, Methodology in air pollution studies using irradiation chambers. J. Air Pollut. Control Assoc. 1967, 17, 460.
Methodology in air pollution studies using irradiation chambers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXkslKisrk%3D&md5=eccc0385a5dbc059a319260b31030cdaCAS | 6042739PubMed |

[6]  J. Worth, L. Ripperton, C. Berry, Ozone variability in mountainous terrain. J. Geophys. Res. 1967, 72, 2063.
Ozone variability in mountainous terrain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXhtVOisr4%3D&md5=b5525a8ce92b4c06ed15cb69a3f903b6CAS |

[7]  H. Jeffries, An experimental method for measuring the rate of synthesis, destruction, and transport of ozone in the lower atmosphere 1971, Ph.D. thesis, University of North Carolina at Chapel Hill, NC.

[8]  M. Cazorla, W. H. Brune, Measurement of ozone production sensor. Atmos. Meas. Tech. 2010, 3, 545.
Measurement of ozone production sensor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSnur3P&md5=3e005b936f0458c330f6957544bb17f8CAS |

[9]  R. M. Kamens, A. C. Stern, Methane in air quality and automobile exhaust emission standards. J. Air Pollut. Control Assoc. 1973, 23, 592.
| 1:CAS:528:DyaE3sXkvVarur0%3D&md5=252dbfa15e4d11cb1bb4c7c926bdfac1CAS | 4122975PubMed |

[10]  H. Jeffries, Photochemical air pollution, in Composition, Chemistry, and Climate of the Atmosphere (Ed. H. B. Singh) 1995, pp. 308–348 (Van Nostand-Reinhold: New York).

[11]  H. Jeffries, D. Fox, R. Kamens, Outdoor smog chamber studies: effect of hydrocarbon reduction on nitrogen dioxide. EPA-650/3-75-011 1975 (Environmental Protection Agency).

[12]  H. Jeffries, D. Fox, R. Kamens, Outdoor smog chamber studies: light effects relative to indoor chambers. Environ. Sci. Technol. 1976, 10, 1006.
Outdoor smog chamber studies: light effects relative to indoor chambers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhvFCit78%3D&md5=9c2611a8b3f5ebaa8393a7d712d25ea0CAS |

[13]  K. Demerjian, A. Kerr, J. Calvert, The mechanism of photochemical smog formation, in Advances in Environmental Sciences and Technology, Vol. 4 (Eds J. N. Pitts Jr and R. L. Metcaf) 1974 pp. 1–262. (Wiley: New York).

[14]  N. R. Greiner, Hydroxyl‐radical kinetics by kinetic spectroscopy. II. Reactions with C2H6, C3H8, and iso‐C4H10 at 300 K. J. Chem. Phys. 1967, 46, 3389.
Hydroxyl‐radical kinetics by kinetic spectroscopy. II. Reactions with C2H6, C3H8, and iso‐C4H10 at 300 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktlKksbk%3D&md5=d48dfa3b8c06fc7f74e7253fcedeaf52CAS |

[15]  D. Stedman, E. Morris, E. Daby, H. Niki, B. Weinstock, The role of OH radicals in photochemical smog reactions, in 160th National ACS Meeting, 13–18 September 1970, Chicago, IL, 1970 (American Chemical Society: Washington, DC).

[16]  T. Hecht, J. Seinfeld, M. Dodge, Further development of generalized kinetic mechanism for photochemical smog. Environ. Sci. Technol. 1974, 8, 327.
Further development of generalized kinetic mechanism for photochemical smog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhsVykt7w%3D&md5=80be4764c3dbd4300a3ecc4b3854ad7eCAS |

[17]  G. Whitten, Modeling of Simulated Photochemical Smog with Kinetics Mechanisms. EPA-600/3-79-001a 1979 (Environmental Protection Agency).

[18]  B. Dimitriades, (Ed.) International Conference on Photochemical Oxidant Pollution and its Control Proceedings: Vol. II, 12–17 September 1976, Raleigh, NC. EPA-600/3-77-001b 1977 (Environmental Protection Agency).

[19]  B. Dimitriades, An alternative to the appendix-J method for calculating oxidant-and NO2-related control requirements, in International Conference on Photochemical Oxidant Pollution and its Control Proceedings: Vol. II, 12–17 September 1976, Raleigh, NC. EPA-600/3-77-001b (Ed. B. Dimitriades) 1977, pp. 871–880 (Environmental Protection Agency).

[20]  B. Dimitriades, Effects of hydrocarbon and nitrogen oxides on photochemical smog formation. Environ. Sci. Technol. 1972, 6, 253.
Effects of hydrocarbon and nitrogen oxides on photochemical smog formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhtVens74%3D&md5=ed1bca4312441af0b0b538547caa18f5CAS |

[21]  B. Dimitriades, Oxidant control strategies. Part I. Urban oxidant control strategy derived from existing smog chamber data. Environ. Sci. Technol. 1977, 11, 80.
Oxidant control strategies. Part I. Urban oxidant control strategy derived from existing smog chamber data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXht1Kgtb4%3D&md5=d7bd0440d41da81d9a2848cc11a30287CAS |

[22]  H. Jeffries, R. Kamens, D. L. Fox, B. Dimitriades, Outdoor smog chamber studies: effect of diurnal light, dilution, and continuous emission on oxidant precursor relationships, in International Conference on Photochemical Oxidant Pollution and its Control Proceedings: Vol. II, 12–17 September 1976, Raleigh, NC. EPA-600/3-77-001b (Ed. B. Dimitriades) 1977, pp. 891–902 (Environmental Protection Agency).

[23]  M. Dodge, Combined use of modeling techniques and smog chamber data to derive ozone–precursor relationships, in International Conference on Photochemical Oxidant Pollution and its Control Proceedings: Vol. II, 12–17 September 1976, Raleigh, NC. EPA-600/3-77-001b (Ed. B. Dimitriades) 1977 (Environmental Protection Agency).

[24]  B. Dimitriades, M. Dodge, Proceedings of the Empirical Kinetic Modeling Approach Validation Workshop, 15–16 December 1981, Research Triangle Park, NC. EPA-600/9-83-014 1983 (Environmental Protection Agency: Research Triangle Park, NC).

[25]  M. Gery, D. Fox, H. Jeffries, L. Stockburger, W. Weathers, A continuous stirred tank reactor investigation of the gas-phase reaction of hydroxyl radicals and toluene. Int. J. Chem. Kinet. 1985, 17, 931.
A continuous stirred tank reactor investigation of the gas-phase reaction of hydroxyl radicals and toluene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XjvV2ntw%3D%3D&md5=c2cb76e50736de4ba87c5cf73b2f8e62CAS |

[26]  M. Gery, G. Z. Whitten, J. P. Killus, Development and Testing of the CBM-IV (Carbon Bond Mechanism) for Urban and Regional Modeling. EPA-600/3-88/012 1985 (Environmental Protection Agency).

[27]  M. Gery, G. Whitten, J. Killus, M. Dodge, A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. 1989, 94, 12 925.
A photochemical kinetics mechanism for urban and regional scale computer modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvFKrsL4%3D&md5=a25e6461dfd3fc71eb2a529016b7253eCAS |

[28]  C. Feigley, H. Jeffries, Smog Chamber Validation using Lagrangian Atmospheric Data. EPA-600/3-79-050 1979 (Environmental Protection Agency).

[29]  C. Feigley, H. Jeffries, Analysis of processes affecting oxidant and precursors in the Los Angeles Reactive Pollutant Program (LARPP) Operation 33. Atmos. Environ. 1979, 13, 1369.
Analysis of processes affecting oxidant and precursors in the Los Angeles Reactive Pollutant Program (LARPP) Operation 33.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXotFGjug%3D%3D&md5=596cf0d1d9fe95c45e4215886db8247dCAS |

[30]  C. Feigley, H. Jeffries, R. Kamens, An experimental simulation of Los Angeles Reactive Pollutant Program (LARPP) operation 33 – part I. Experimental simulation in an outdoor smog chamber. Atmos. Environ. 1982, 16, 1989.
An experimental simulation of Los Angeles Reactive Pollutant Program (LARPP) operation 33 – part I. Experimental simulation in an outdoor smog chamber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlsV2rsrg%3D&md5=74f68af7902142dfc2c7890cc94416a1CAS |

[31]  K. Sexton, The Role of Nitrogen-Containing Compounds in Several Organic Smog Systems. MSPH Technical Report 1979 (Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina: Chapel Hill).

[32]  K. Sexton, Experimental simulation of urban-like smog systems for studying the chemistry of ozone formation. DAI Vol. 46–02B, Pub.# AAC8508621 1984, Ph.D. Dissertation, University of North Carolina, Chapel Hill, NC.

[33]  R. Kamens, G. D. Rives, J. M. Perry, D. A. Bell, R. F. Paylor, L. D. Claxton, Mutagenic and chemical changes in dilute wood smoke as it ages and reacts with O3, NO2 in the dark – an outdoor chamber study. Environ. Sci. Technol. 1984, 18, 523.
Mutagenic and chemical changes in dilute wood smoke as it ages and reacts with O3, NO2 in the dark – an outdoor chamber study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktVWqs7c%3D&md5=b69296c61ee707c1b9729eba35579c4cCAS |

[34]  R. Kamens, Z. Guo, J. N. Fulcher, D. A. Bell, The influence of humidity and temperature on the daytime decay of PAH on atmospheric soot particles. Environ. Sci. Technol. 1988, 22, 103.
The influence of humidity and temperature on the daytime decay of PAH on atmospheric soot particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXis1Citw%3D%3D&md5=de817964d1524057b9199bbc2025b200CAS | 22195517PubMed |

[35]  R. Kamens, J. Guo, Z. Guo, PAH and N2O5 reactions on atmospheric soot particles. Atmos. Environ. 1990, 24A, 1161.
| 1:CAS:528:DyaK3cXks1Cnt70%3D&md5=7f82e85ccd341944ef2c1bc651612a6dCAS |

[36]  Z. Guo, R. Kamens, An experimental technique for studying heterogeneous reactions of polyaromatic hydrocarbons on particle surfaces. J. Atmos. Chem. 1991, 12, 137.
An experimental technique for studying heterogeneous reactions of polyaromatic hydrocarbons on particle surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhslShtrk%3D&md5=d663dcd606d11b327dcb0eddc783e9f7CAS |

[37]  W. Rattanavaraha, E. Rosen, H. Zhang, Q. Li, K. Pantong, R. M. Kamens, The reactive oxidant potential of different types of aged atmospheric particles: an outdoor chamber. Atmos. Environ. 2011, 45, 3848.
The reactive oxidant potential of different types of aged atmospheric particles: an outdoor chamber.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFOhu7Y%3D&md5=4c1845b8db71a13a2c00798da58519fdCAS |

[38]  Q. Li, A. Wyatt, R. M. Kamens, Oxidant generation and toxicity enhancement of aged-diesel exhaust. Atmos. Environ. 2009, 43, 1037.
Oxidant generation and toxicity enhancement of aged-diesel exhaust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1agsQ%3D%3D&md5=b1543001f1a4744fe32db5a16b1f20d8CAS |

[39]  C. Li, R. Kamens, The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmos. Environ. 1993, 27A, 523.
| 1:CAS:528:DyaK3sXitFyks7w%3D&md5=97e112fdaf4a853512ebee3eda7f9be1CAS |

[40]  Z. Fan, D. Chen, P. Birla, R. M. Kamens, Modeling of nitro-polycyclic aromatic hydrocarbon formation and decay in the atmosphere. Atmos. Environ. 1995, 29, 1171.
Modeling of nitro-polycyclic aromatic hydrocarbon formation and decay in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsFSksbg%3D&md5=6114d9edc55475656f1c366d16b98377CAS |

[41]  Z. Fan, R. M. Kamens, J. Hu, J. Zhang, S. McDow, Photostability of nitro-polycyclic aromatic hydrocarbons on combustion particles in sunlight. Environ. Sci. Technol. 1996, 30, 1358.
Photostability of nitro-polycyclic aromatic hydrocarbons on combustion particles in sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1ylsro%3D&md5=4af4fba56ee5d2e66f88fad37d0e771bCAS |

[42]  J. Calvert, R. Atkinson, K. Becker, R. Kamens, J. Seinfeld, T. Wallington, G. Yarwood, The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons 2002 (Oxford University Press: New York).

[43]  P. Birla, P. R. M. Kamens, Effects of combustion temperature on the atmospheric stability of polybrominated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol. 1994, 28, 1437.
Effects of combustion temperature on the atmospheric stability of polybrominated dibenzo-p-dioxins and dibenzofurans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXks1CgsLs%3D&md5=f3038d8a9f702cf0537927349d2e306bCAS | 22165926PubMed |

[44]  C. Lutes, M. J. Charles, J. R. Odum, R. M. Kamens, Chamber aging studies of the atmospheric stability of polybrominated dibenzo-p-dioxins and dibenzofurans. Environ. Sci. Technol. 1992, 26, 991.
Chamber aging studies of the atmospheric stability of polybrominated dibenzo-p-dioxins and dibenzofurans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitVSjtL8%3D&md5=f9c4b694ec28a6f670dda6792a2e2f75CAS |

[45]  D. Pennise, R. M. Kamens, Effects of combustion temperature on the atmospheric stability of chlorinated dibenzo dioxins and furan. Environ. Sci. Technol. 1996, 30, 2832.
Effects of combustion temperature on the atmospheric stability of chlorinated dibenzo dioxins and furan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFGrtro%3D&md5=1263dcc9fdc201654f32eced9926d82aCAS |

[46]  S. McDow, M. Jang, Y. Hong, R. M. Kamens, An approach to studying the effect of organic composition on atmospheric aerosol photochemistry. J. Geophys. Res. 1996, 101, 19 593.
An approach to studying the effect of organic composition on atmospheric aerosol photochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVKitbw%3D&md5=62737d5aeb82d655d6bc31652c20b1e9CAS |

[47]  J. Pankow, Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos. Environ. 1987, 21, 2275.
Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtVGmtw%3D%3D&md5=65fda9734779624fc7060dc5cedd274fCAS |

[48]  J. Pankow, An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 1994, 28, 185.
An absorption model of gas/particle partitioning of organic compounds in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFajs78%3D&md5=c57a2c978502e6cc9c92a9ebca46e43aCAS |

[49]  J. Odum, J. Yu, R. M. Kamens, Modeling the mass transfer of semi-volatile organics in combustion aerosols. Environ. Sci. Technol. 1994, 28, 2278.
Modeling the mass transfer of semi-volatile organics in combustion aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXms1agurs%3D&md5=779d794ac430d63cb0bff6f95f44ac03CAS | 22176045PubMed |

[50]  M. Strommen, R. M. Kamens, Development and application of a dual-impedance radial diffusion model to simulate the partitioning of semivolatle organic compounds in combustion aerosols. Environ. Sci. Technol. 1997, 31, 2983.
Development and application of a dual-impedance radial diffusion model to simulate the partitioning of semivolatle organic compounds in combustion aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlslGhtbo%3D&md5=d2b2a7350a04424b15c27d3bc0480db6CAS |

[51]  M. Jang, R. M. Kamens, B. K. Leach, M. R. Strommen, A thermodynamic approach using group contribution methods to model: the partitioning of semi-volatile organic compounds on atmospheric particulate matter. Environ. Sci. Technol. 1997, 31, 2805.
A thermodynamic approach using group contribution methods to model: the partitioning of semi-volatile organic compounds on atmospheric particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFymtLw%3D&md5=98cef71f3f1db9184e8e18a03835a0e0CAS |

[52]  M. Jang, R. M. Kamens, A thermodynamic approach for modeling partitioning of semivolatile organic compounds on atmospheric particulate matter: humidity effects. Environ. Sci. Technol. 1998, 32, 1237.
A thermodynamic approach for modeling partitioning of semivolatile organic compounds on atmospheric particulate matter: humidity effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVyruro%3D&md5=3b74eaca100e0e179f60e35a2ebbaa5eCAS |

[53]  R. Kamens, M. Jang, B. K. Leach, M. R. Strommen, C. Chien, Aerosol formation from the reaction of α-pinene and ozone using a gas phase kinetics-aerosol partitioning model. Environ. Sci. Technol. 1999, 33, 1430.
Aerosol formation from the reaction of α-pinene and ozone using a gas phase kinetics-aerosol partitioning model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFOmtbg%3D&md5=b14f70b6996a3e3edb4e2921f9049480CAS |

[54]  R. Kamens, M. Jaoui, Modeling aerosol formation from α-pinene + NOx in the presence of natural sunlight using gas phase kinetics and gas-particle partitioning theory. Environ. Sci. Technol. 2001, 35, 1394.
Modeling aerosol formation from α-pinene + NOx in the presence of natural sunlight using gas phase kinetics and gas-particle partitioning theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFKisb4%3D&md5=3a7d40f431accc009459b782e1046763CAS | 11348073PubMed |

[55]  M. Jaoui, R. M. Kamens, Mass gaseous and particulate oxidation products of the reaction from a mixture of α-pinene + β-pinene/O3/air in the absence of light and α-pinene + β-pinene/NOx/air in the presence of natural sunlight. J. Atmos. Chem. 2003, 44, 259.
Mass gaseous and particulate oxidation products of the reaction from a mixture of α-pinene + β-pinene/O3/air in the absence of light and α-pinene + β-pinene/NOx/air in the presence of natural sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitl2it7w%3D&md5=44c242d294dc2ac9751cea473ace6d75CAS |

[56]  S. Lee, M. Jang, R. Kamens, SOA formation from the photooxidation of α-pinene in the presence of freshly emitted diesel soot exhaust. Atmos. Environ. 2004, 38, 2597.
SOA formation from the photooxidation of α-pinene in the presence of freshly emitted diesel soot exhaust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFGgs7c%3D&md5=019ca7516310c6965edfdc3ed371d61eCAS |

[57]  S. Leungsakul, H. E. Jeffries, R. M. Kamens, A kinetic mechanism for predicting secondary aerosol formation from the reaction of d-limonene with NOx and natural sunlight. Atmos. Environ. 2005, 39, 7063.
A kinetic mechanism for predicting secondary aerosol formation from the reaction of d-limonene with NOx and natural sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGht7jI&md5=016cc7af52550e7e11085ae0a75e1fbfCAS |

[58]  S. Leungsakul, M. Jaoui, R. M. Kamens, A kinetic mechanism for predicting secondary aerosol formation from the reaction of d-limonene with Ozone. Environ. Sci. Technol. 2005, 39, 9583.
A kinetic mechanism for predicting secondary aerosol formation from the reaction of d-limonene with Ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFymsL3M&md5=d3325ef0483a02a830e5d4e5b1725393CAS | 16475339PubMed |

[59]  D. Hu, M. Tolocka, Q. L, D. Hu, M. Tolocka, Q. L, A kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight. Atmos. Environ. 2007, 41, 6478.
A kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsl2jtr8%3D&md5=370737349981ac802faddbd115d3bd18CAS |

[60]  R. M. Kamens, H. Zhang, E. H. Chen, Y. Zhou, H. M. Parikh, R. Wilson, K. Galloway, E. P. Rosen, Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects. Atmos. Environ. 2011, 45, 2324.
Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVWktbs%3D&md5=70dcfaa60ebb5bdf1b9cec81061bbb5dCAS |

[61]  Y. Zhou, H. Zhang, H. M. Parikh, E. H. Chen, W. Rattanavaraha, E. P. Rosen, W. Wang, R. M. Kamens, Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: water and particle seed effects (II). Atmos. Environ. 2011, 45, 3882.
Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: water and particle seed effects (II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFOgsrw%3D&md5=c9e1cc03e5d99df2c1fe20023a695aebCAS |

[62]  H. F. Zhang, H. M. Parikh, J. Bapat, Y.-H. Lin, J. D. Surratt, R. M. Kamens, Modeling of SOA formation from isoprene photooxidation chamber studies using different approaches. Environ. Chem. 2013, 10, 194.
Modeling of SOA formation from isoprene photooxidation chamber studies using different approaches.Crossref | GoogleScholarGoogle Scholar |

[63]  M. Tolocka, M. Jang, J. M. Ginter, F. J. Cox, R. M. Kamens, M. Johnston, Formation of oligomers in secondary organic aerosol. Environ. Sci. Technol. 2004, 38, 1428.
Formation of oligomers in secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVaksw%3D%3D&md5=db598c55b8b61241fd9ee7fb51d488cbCAS | 15046344PubMed |

[64]  M. Jang, N. M. Czoschke, S. Lee, R. M. Kamens, Heterogeneous atmospheric organic aerosol production by inorganic acid-catalyzed particle-phase reactions. Science 2002, 298, 814.
Heterogeneous atmospheric organic aerosol production by inorganic acid-catalyzed particle-phase reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFSntLk%3D&md5=f347a4de506d13b874097c68a4f53a39CAS | 12399587PubMed |

[65]  M. Jang, R. M. Kamens, Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst. Environ. Sci. Technol. 2001, 35, 4758.
Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFOnsLk%3D&md5=a11ee754ffe67dbeaa5ed2039a1ac7c0CAS | 11775150PubMed |

[66]  K. Sexton, H. Jeffries, M. Jang, R. Kamens, M. Doyle, I. Voicu, I. Jaspers, Photochemical products in urban mixtures enhance inflammatory responses in lung cells. Inhal. Toxicol. 2004, 16, 107.
Photochemical products in urban mixtures enhance inflammatory responses in lung cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVKls70%3D&md5=6e261ae4c5706412fa9a0f29600005f3CAS | 15204799PubMed |

[67]  Air Quality Criteria for Ozone and Related Photochemical Oxidants (Final). Volumes I, II, and III, EPA 600/R-05/004aF-cF 2006 (Environmental Protection Agency: Research Triangle Park, NC).

[68]  M. Doyle, K. Sexton, H. E. Jeffries, K. Bridge, I. Jaspers, Effects of 1,3-butadiene, isoprene, and their photochemical degradation products on human lung cells. Environ. Health Perspect. 2004, 112, 1488.
Effects of 1,3-butadiene, isoprene, and their photochemical degradation products on human lung cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGmur7N&md5=678a8984597786e6af0f6a42b1009e5aCAS | 15531432PubMed |

[69]  M. Doyle, K. G. Sexton, H. E. Jeffries, I. Jaspers, Atmospheric photochemical transformations enhance 1,3-butadiene-induced inflammatory responses in human epithelial cells: the role of ozone and other photochemical degradation products. Chem. Biol. Interact. 2007, 166, 163.
Atmospheric photochemical transformations enhance 1,3-butadiene-induced inflammatory responses in human epithelial cells: the role of ozone and other photochemical degradation products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFGkt7g%3D&md5=3cff74ee2efc57067dffd79f922c03d8CAS | 16860297PubMed |

[70]  K. G. Sexton, M. L. Doyle, H. E. Jeffries, S. Ebersviller, Development and testing of a chemical mechanism for atmospheric photochemical transformations of 1,3-butadiene. Chem. Biol. Interact. 2007, 166, 156.
Development and testing of a chemical mechanism for atmospheric photochemical transformations of 1,3-butadiene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFGkt7s%3D&md5=ad061f8abb8a6fe4b63f2550f973b766CAS | 17328875PubMed |

[71]  K. de Bruijne, S. Ebersviller, K. G. Sexton, S. Lake, D. Leith, R. Goodman, J. Jetters, G. W. Walters, M. Doyle-Eisele, R. Woodside, H. E. Jeffries, I. Jaspers, Design and testing of electrostatic aerosol in vitro exposure system (EAVES): an alternative exposure system for particles. Inhal. Toxicol. 2009, 21, 91.
Design and testing of electrostatic aerosol in vitro exposure system (EAVES): an alternative exposure system for particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFyhtA%3D%3D&md5=44bb81649e27e8ef1597cc6761c5fc8dCAS | 18800273PubMed |

[72]  K. M. Lichtveld, S. M. Ebersviller, K. G. Sexton, W. Vizuete, I. Jaspers, H. E. Jeffries, In vitro exposures in diesel exhaust atmospheres: resuspension of PM from filters versus direct deposition of PM from air. Environ. Sci. Technol. 2012, 46, 9062.
In vitro exposures in diesel exhaust atmospheres: resuspension of PM from filters versus direct deposition of PM from air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSjurfO&md5=c064aec7b9eb527216c544d158b5fff7CAS | 22834915PubMed |

[73]  S. Ebersviller, K. Lichtveld, K. G. Sexton, J. Zavala, Y. H. Lin, I. Jaspers, H. E. Jeffries, Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1. Simple VOCs and model PM. Atmos. Chem. Phys. 2012, 12, 12 277.
Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1. Simple VOCs and model PM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVOjsLY%3D&md5=74c1f7f1b47ea7ba1498b740d38b9c4bCAS |

[74]  S. Ebersviller, K. Lichtveld, K. G. Sexton, J. Zavala, Y. H. Lin, I. Jaspers, H. E. Jeffries, Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2. Complex urban VOCs and model PM. Atmos. Chem. Phys. 2012, 12, 12 293.
Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2. Complex urban VOCs and model PM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVOjsLc%3D&md5=c7400ea1dc2cca3df58d7e97bfd58a31CAS |

[75]  R. Kamens, H. E. Jeffries, K. G. Sexton, A. A. Gerhardt, Smog Chamber Experiments to Test Oxidant Related Control Strategy Issues, EPA/600/3-82/014 (NTIS PB82227695) 1982 (US Environmental Protection Agency: Washington, DC).

[76]  H. Jeffries, R. M. Kamens, K. G. Sexton, A. A. Gerhardt, Outdoor Smog Chamber Experiments to Test Photochemical Models. EPA-600/3-82-016a 1982 (Environmental Protection Agency).

[77]  H. Jeffries, K. G. Sexton, R. M. Kamens, M. S. Holleman, Outdoor Smog Chamber Experiments to Test Photochemical Models: Phase II. EPA-600/3-85/029 1985 (Environmental Protection Agency).

[78]  K. Sexton, H. E. Jeffries, J. R. Arnold, T. L. Kale, R. M. Kamens, Validation Data for Photochemical Mechanisms. EPA-600/3-87/003 1987 (Environmental Protection Agency).

[79]  K. G. Sexton, H. E. Jeffries, J. R. Arnold, T. L. Kale, R. M. Kamens, Validation Data for Photochemical Mechanisms: Experimental Result. EPA-600/3-88/000 1988 (Environmental Protection Agency).

[80]  H. E. Jeffries, K. G. Sexton, J. R. Arnold, J. L. Li, Validation Testing of New Mechanisms with Outdoor Chamber Data, Vol. 1. Comparison of CB4 and CAL Mechanisms. EPA-600/3-88/000a 1988 (Environmental Protection Agency).

[81]  H. E. Jeffries, K. G. Sexton, J. R. Arnold, Validation Testing of New Mechanisms with Outdoor Chamber Data, Vol. 2. Analysis of VOC Data for the CB4 and CAL Photochemical Mechanisms. EPA-600/3-88/000b 1988 (Environmental Protection Agency).

[82]  H. E. Jeffries, K. G. Sexton, J. R. Arnold, T. L. Kale, Validation Testing of New Mechanisms with Outdoor Chamber Data, Vol. 3. Calculation of Photochemical Reaction Photolysis Rates in the UNC Chamber. EPA-600/3-88/000c 1988 (Environmental Protection Agency).

[83]  H. E. Jeffries, K. G. Sexton, J. R. Arnold, T. L. Kale, Validation Testing of New Mechanisms with Outdoor Chamber Data, Vol. 4. Appendices to Photochemical Reaction Photolysis Rates in the UNC Chamber. EPA-600/3-88/000d 1988 (Environmental Protection Agency).

[84]  R. M. Kamens, H. E. Jeffries, K. G. Sexton, R. W. Wiener, The impact of day-old dilute smog on fresh smog systems: an outdoor chamber study. Atmos. Environ. 1982, 16, 1027.
The impact of day-old dilute smog on fresh smog systems: an outdoor chamber study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XksVens7k%3D&md5=9b76eccb5434a8b1a7ac106dc3528769CAS |

[85]  H. E. Jeffries, K. G. Sexton, T. P. Morris, M. Jackson, R. G. Goodman, R. M. Kamens, M. S. Holleman, Outdoor Smog Chamber Experiments Using Automobile Exhaust. EPA-600/3-85/032 1985 (Environmental Protection Agency).

[86]  H. E. Jeffries, K. G. Sexton, M. S. Holleman, Outdoor Smog Chamber Experiments: Reactivity of Methanol Exhaust. EPA-460/3-85/009a 1985 (Environmental Protection Agency).

[87]  H. E. Jeffries, K. G. Sexton, M. S. Holleman, Outdoor Smog Chamber Experiments: Reactivity of Methanol Exhaust, Part II: Quality Assurance and Data Processing System Description. EPA-460/3-85/009b 1985 (Environmental Protection Agency).

[88]  H. E. Jeffries, K. G. Sexton, The relative ozone forming potential of methanol-fueled vehicle emissions and gasoline-fueled vehicle emissions in outdoor smog chambers, Final Report, Coordinating Research Council Project ME-1, NTIS Accession number PB 93 206902 1994 (University of North Carolina: Atlanta, GA).

[89]  H. E. Jeffries, K. G. Sexton, Outdoor smog chamber studies of alternative fuel vehicle emissions, in Preprints of the Annual Automotive Technology Development Contractors’ Coordination Meeting, 24–27 October 1994, Dearborn, MI 1994 (US Department of Energy).

[90]  H. E. Jeffries, K. G. Sexton, Yu. Jianzhen, Atmospheric Photochemical Studies of Pollutant Emissions from Transportation Vehicles Operating on Alternative Fuels 1996 (National Renewable Energy Laboratory: Golden, CO).

[92]  H. E. Jeffries, K. G. Sexton, Modeling aspects of nitrogen oxides using smog chamber data, in Workshop Proceedings on Formation and Fate of Atmospheric Nitrates, 22–23 October 1979, Research Triangle Park, NC. EPA-600/9-81-025 1981 (Environmental Protection Agency: Research Triangle Park, NC).

[93]  K. G. Sexton, Prediction of photochemically produced formaldehyde with chemical mechanisms developed for urban ozone systems, in Proceedings of the 1987 EPA/APCA Symposium on Measurement of Toxic and Related Air Pollutants, 3–6 May 1987, Research Triangle Park, NC 1987 (Air Pollution Control Association: Pittsburgh, PA).

[95]  H. E. Jeffries, K. G. Sexton, J. Arnold, Y. Bai, J. L. Li, R. Crouse, A Chamber and Modeling Study to Assess the Photochemistry of Formaldehyde. EPA-600/3–90/052 1990 (Environmental Protection Agency).

[96]  K. G. Sexton, H. E. Jeffries, J. Arnold, Intercomparison of formaldehyde measurement in chambers, in Proceedings of the 1991 US EPA/A&WMA International Symposium, Measurement of Toxic and Related Air Pollutants, 6–10 May 1991, Durham, NC. Vol. 2, number VIP-21 1991, pp. 1147–1152 (Air and Waste Management Association: Pittsburgh, PA).

[97]  H. E. Jeffries, K. G. Sexton, J. Arnold, Better formaldehyde predictions by photochemical mechanisms, in Proceedings of the 1991 US EPA/A&WMA International Symposium, Measurement of Toxic and Related Air Pollutants, 6–10 May 1991, Durham, NC. Vol. 1, number VIP-21 1991, pp. 97–103 (Air and Waste Management Association: Pittsburgh, PA).

[98]  R. M. Kamens, H. E. Jeffries, M. W. Gery, R. W. Wiener, K. G. Sexton, G. B. Howe, The impact of α-pinene on urban smog formation: an outdoor chamber study. Atmos. Environ. 1981, 15, 969.
The impact of α-pinene on urban smog formation: an outdoor chamber study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlsFGmurc%3D&md5=d03a77fd870aab4df560d94cd6886f57CAS |

[99]  H. E. Jeffries, R. Crouse, K. G. Sexton, Light transmission into Teflon bags and chambers, in Measurement of Toxic and Related Air Pollutants. Vol. 1, number VIP-21 1991, pp. 97–103 (Air and Waste Management Association: Pittsburgh, PA).

[100]  H. E. Jeffries, K. G. Sexton, C. H. Salmi, Effects of Chemistry and Meteorology on Ozone Control Calculations Using Simple Trajectory Models and the EKMA Procedure. EPA-450/4-81-034 1981 (Environmental Protection Agency: Research Triangle Park, NC).

[101]  H. E. Jeffries, K. G. Sexton, Comments on the rationale and need to consider an alternative to EKMA. J. Air Pollut. Control Assoc. 1983, 33, 1087.
Comments on the rationale and need to consider an alternative to EKMA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXisFGluw%3D%3D&md5=862ba89c8ad41ef8c2189dcb2d49b875CAS |

[102]  H. E. Jeffries, K. G. Sexton, Technical Discussion Related to the Choice of Photolytic Rates for Carbon Bond Mechanisms in OZIPM4/EKMA. EPA-450/4-87/003 1987 (Environmental Protection Agency).

[103]  H. E. Jeffries, K. G. Sexton, Comparison of two chemical mechanisms for use in EKMA to calculate hydrocarbon control requirements, in Proceedings of the APCA International Specialty Conference on The Scientific and Technical Issues Facing Post 1987 Ozone Control Strategies, 16–19 November 1987, Hartford, CT. APCA Transactions Series, number 12 (Eds G. T. Wolff, J. L. Hanisch, K. Schere) 1988 (Air and Waste Management Association: Pittsburgh, PA).

[104]  J. Yu, H. E. Jeffries, R. M. Le Lacheur, Identifying airborne carbonyl compounds in isoprene atmospheric photooxidation products by their PFBHA oximes using gas chromatography/ion trap mass spectrometry. Environ. Sci. Technol. 1995, 29, 1923.
Identifying airborne carbonyl compounds in isoprene atmospheric photooxidation products by their PFBHA oximes using gas chromatography/ion trap mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsFClu7c%3D&md5=76b013e472e9912c5006647b207eea42CAS | 22191338PubMed |

[105]  C.-J. Chien, M. J. Charles, K. G. Sexton, H. E. Jeffries, Analysis of airborne carboxylic acids and phenols as their pentafluorobenzyl derivatives: gas chromatography/ion trap mass spectrometry with a novel chemical ionization reagent, PFBOH. Environ. Sci. Technol. 1998, 32, 299.
Analysis of airborne carboxylic acids and phenols as their pentafluorobenzyl derivatives: gas chromatography/ion trap mass spectrometry with a novel chemical ionization reagent, PFBOH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFKlsA%3D%3D&md5=f5a38c9a7c5563fb42ff5a4166074d40CAS |

[106]  J. Yu, H. Jeffries, K. Sexton, Atmospheric photooxidation of alkylbenzenes – I. Carbonyl product analyses. Atmos. Environ. 1997, 31, 2261.
Atmospheric photooxidation of alkylbenzenes – I. Carbonyl product analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslyhtrk%3D&md5=2342e92fc3ea4f59f47196339a4d3d8aCAS |

[107]  J. Yu, H. Jeffries, Atmospheric photooxidation of alkylbenzene – II. Evidence of formation of epoxide intermediates. Atmos. Environ. 1997, 31, 2281.
Atmospheric photooxidation of alkylbenzene – II. Evidence of formation of epoxide intermediates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslyhtrY%3D&md5=f55f95828ce9c1c21c39741207419276CAS |

[108]  X. Liu, H. Jeffries, K. Sexton, Atmospheric photochemical degradation of 1,4-unsaturated dicarbonyls. Environ. Sci. Technol. 1999, 33, 4212.
Atmospheric photochemical degradation of 1,4-unsaturated dicarbonyls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsV2nu7k%3D&md5=93743800aef473d0ee1f58ed0a841127CAS |

[109]  X. Liu, H. Jeffries, K. Sexton, Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene. Atmos. Environ. 1999, 33, 3005.
Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFSrt7Y%3D&md5=f71b8f4acd67384ac25517ba5fcbdf65CAS |