Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Lead, antimony and arsenic in dissolved and colloidal fractions from an amended shooting-range soil as characterised by multi-stage tangential ultrafiltration and centrifugation

Sondra Klitzke A G , Friederike Lang A D , Jason Kirby B , Enzo Lombi B C E and Rebecca Hamon B F
+ Author Affiliations
- Author Affiliations

A Berlin University of Technology, Department of Soil Science, Ernst-Reuter-Platz 1, D-10587 Berlin. Email: fritzi.lang@bodenkunde.uni-freiburg.de

B CSIRO Land and Water, Centre for Environmental Contaminant Research, Glen Osmond, SA 5064, Australia. Email: jason.kirby@csiro.au

C CRC CARE, PO Box 486, Salisbury, SA 5106, Australia.

D Present address: University of Freiburg, Institute of Soil Sciences and Forest Nutrition, Bertoldstr. 17, D-79098 Freiburg im Breisgau, Germany.

E Present address: Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia. Email: enzo.lombi@unisa.edu.au

F Present address: Istituto di Chimica Agraria Ambientale, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, I-29100 Piacenza, Italy. Email: re.fish@hotmail.com

G Corresponding author. Present address: Federal Environment Agency, Section Drinking Water Treatment and Resource Protection, Schichauweg 58, D-12307 Berlin, Germany. Email: sondra.klitzke@alumni.tu-berlin.de

Environmental Chemistry 9(5) 462-473 https://doi.org/10.1071/EN12010
Submitted: 31 May 2011  Accepted: 10 September 2012   Published: 12 November 2012

Environmental context. The size of soil colloids is – among other characteristics – crucial for the mobility of associated contaminants. We analysed the effect of liming on the size of colloids mobilised from strongly contaminated shooting-range soils using multi-stage tangential ultrafiltration (MTUF) for the size fractionation of dispersed soil colloids. Our results indicate the high analytical potential of MTUF and show that liming induces the aggregation of colloids, thereby decreasing the mobilisation of colloid-bound Sb and As, but increasing colloidal Pb.

Abstract. The size and composition of colloids are important factors controlling their relevance as carriers of metal(loid)s in soils. Liming, which is often used to reduce the effect of heavy metal contamination in soil, can alter concentrations and characteristics of colloids in soil suspension. In batch studies, we compared the influence of changing pH and cation valency on the size distribution and composition of dispersed colloids and on the concentrations of Pb, As and Sb associated with colloids and in solution following the addition of Ca(OH)2 and KOH to soil samples from a contaminated-shooting range site. Multi-stage tangential ultrafiltration (MTUF) and centrifugation were used for the size fractionation of colloids in aqueous suspension. An increase in soil pH resulted in an increase in colloid-associated Pb, with much higher concentrations in the KOH than in the Ca(OH)2 treated samples. In contrast colloid-associated Sb and As increased only in the KOH treated samples. Addition of the monovalent K-ion induced the dispersion of small (~9–220 nm) organo(-mineral) colloids, whereas the divalent Ca-ion suppressed their dispersion and led to the formation of larger colloids (220–1200 nm). Whereas centrifugation underestimated contaminants (i.e. Pb) associated with organic colloids (density <2.6 g cm–3) MTUF gave a distorted distribution of inorganic colloids (i.e. needle-shaped sesquioxides).

Additional keywords : cation effect, colloid, remediation.


References

[1]  J. F. Ranville, D. J. Chittleborough, R. Beckett, Particle-size and element distribution of soil colloids: implications for colloid transport. Soil Sci. Soc. Am. J. 2005, 69, 1173.
Particle-size and element distribution of soil colloids: implications for colloid transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvV2lt7w%3D&md5=a78099e94d5a9c1161620620a37a1f4bCAS |

[2]  D. L. Jensen, A. Ledin, T. H. Christensen, Speciation of heavy metals in landfill-leachate polluted groundwater. Water Res. 1999, 33, 2642.
Speciation of heavy metals in landfill-leachate polluted groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlOgtbo%3D&md5=79898db18ea3f6a3372d9759a54bb097CAS |

[3]  L. Denaix, R. M. Semlali, F. Douay, Dissolved and colloidal transport of Cd, Pb, and Zn in a silt loam soil affected by atmospheric industrial deposition. Environ. Pollut. 2001, 114, 29.
Dissolved and colloidal transport of Cd, Pb, and Zn in a silt loam soil affected by atmospheric industrial deposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVaku7w%3D&md5=dca97b35f2c5b787b5cfb1c315909a22CAS |

[4]  N. C. Brady, R. R. Weil, The Nature and Properties of Soils, 13th edn 2002 (Prentice Hall: Upper Saddle River, NJ).

[5]  R. Kretzschmar, M. Borkovec, D. Grolimund, M. Elimelech, Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 1999, 66, 121.
Mobile subsurface colloids and their role in contaminant transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFKgs7k%3D&md5=d0deeacbdc52b01fce238beb6eedfe7cCAS |

[6]  J. F. Ranville, D. J. Chittleborough, F. Shanks, R. J. S. Morrison, T. Harris, F. Doss, R. Beckett, Development of sedimentation field-flow fractionation-inductively coupled plasma mass-spectrometry for the characterization of environmental colloids. Anal. Chim. Acta 1999, 381, 315.
Development of sedimentation field-flow fractionation-inductively coupled plasma mass-spectrometry for the characterization of environmental colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVSqtA%3D%3D&md5=0285d272af099d7c8cb4b907ab7eb697CAS |

[7]  J. Buffle, G. G. Leppard, Characterization of aquatic colloids and macromolecules. 2. Key role of physical structures on analytical results. Environ. Sci. Technol. 1995, 29, 2176.
Characterization of aquatic colloids and macromolecules. 2. Key role of physical structures on analytical results.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFKksrg%3D&md5=b30b78b3a801092c96362c774ca3803cCAS |

[8]  T. Nifant’eva, P. Burba, O. Fedorova, V. M. Shkinev, B. Y. Spivakov, Ultrafiltration and determination of Zn- and Cu-humic substances complexes stability constants. Talanta 2001, 53, 1127.
Ultrafiltration and determination of Zn- and Cu-humic substances complexes stability constants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslCqu74%3D&md5=eeb30a7bb800177f58b479d9c00ebf86CAS |

[9]  Q. Wu, G. Riise, R. Kretzschmar, Size distribution of organic matter and associated propiconazole in agricultural runoff material. J. Environ. Qual. 2003, 32, 2200.
Size distribution of organic matter and associated propiconazole in agricultural runoff material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1KntLo%3D&md5=796932f7fe20f92d517314c2e9a70106CAS |

[10]  N. D. Williams, D. E. Walling, G. J. L. Leeks, An analysis of the factors contributing to the settling potential of fine fluvial sediment. Hydrol. Processes 2008, 22, 4153.
An analysis of the factors contributing to the settling potential of fine fluvial sediment.Crossref | GoogleScholarGoogle Scholar |

[11]  P. Burba, V. Shkinev, B. Y. Spivakov, On-line fractionation and characterization of aquatic humic substances by means of sequential-stage ultrafiltration. Fresenius J. Anal. Chem. 1995, 351, 74.
On-line fractionation and characterization of aquatic humic substances by means of sequential-stage ultrafiltration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktVGmtLc%3D&md5=eb00e1d88d28575b09175e52fa0b541dCAS |

[12]  S. E. J. Buykx, A. G. T. van den Hoop, R. F. M. J. Cleven, J. Buffle, K. J. Wilkinson, Particles in natural surface waters: chemical composition and size distribution. Int. J. Environ. Anal. Chem. 2000, 77, 75.
Particles in natural surface waters: chemical composition and size distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksF2hs7g%3D&md5=812bf158c8ef65bd6cf365e571a202c7CAS |

[13]  F. Gadel, L. Serve, M. Benedetti, L. C. Da Cunha, J. L. Blazi, Biogeochemical characteristics of organic matter in the particulate and colloidal fractions downstream of the Rio Negro and Solimoes rivers confluence. Agronomie 2000, 20, 477.
Biogeochemical characteristics of organic matter in the particulate and colloidal fractions downstream of the Rio Negro and Solimoes rivers confluence.Crossref | GoogleScholarGoogle Scholar |

[14]  P. Burba, A.-M. Beer, J. Lukanov, Metal distribution and binding in balneological peats and their aqueous extracts. Fresenius J. Anal. Chem. 2001, 370, 419.
Metal distribution and binding in balneological peats and their aqueous extracts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFyqtLo%3D&md5=57c4ef24f5b6159abd87054869aed7eeCAS |

[15]  T. Allard, T. Weber, C. Bellot, C. Damblans, M. Bardy, G. Bueno, N. R. Nascimento, E. Fritsch, M. F. Benedetti, Tracing source and evolution of suspended particles in the Rio Negro Basin (Brazil) using chemical species of iron. Chem. Geol. 2011, 280, 79.
Tracing source and evolution of suspended particles in the Rio Negro Basin (Brazil) using chemical species of iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFGntg%3D%3D&md5=8407fa72b7ad254bcb453468699bd4e0CAS |

[16]  L. P. C. Romão, G. R. Castro, A. H. Rosa, J. C. Rocha, P. M. Padilha, H. C. Silva, Tangential-flow ultrafiltration: a versatile methodology for determination of complexation parameters in refractory organic matter from Brazilian water and soil samples. Anal. Bioanal. Chem. 2003, 375, 1097.

[17]  L. Delprat, P. Chassin, M. Linères, C. Jambert, Characterization of dissolved organic carbon in cleared forest soils converted to maize cultivation. Dev. Crop Sci. 1997, 25, 257.
Characterization of dissolved organic carbon in cleared forest soils converted to maize cultivation.Crossref | GoogleScholarGoogle Scholar |

[18]  D. Grolimund, M. Elimelech, M. Borkovec, K. Barmettler, R. Kretzschmar, H. Sticher, Transport of in situ mobilized colloidal particles in packed soil columns. Environ. Sci. Technol. 1998, 32, 3562.
Transport of in situ mobilized colloidal particles in packed soil columns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlKgs78%3D&md5=e14cd2a239870c881e955e76323f9f9aCAS |

[19]  L. A. Knechtenhofer, I. O. Xifra, A. C. Scheinost, H. Flühler, R. Kretzschmar, Fate of heavy metals in a strongly acidic shooting-range soil: small-scale metal distribution and its relation to preferential water flow. J. Plant Nutr. Soil Sci. 2003, 166, 84.
Fate of heavy metals in a strongly acidic shooting-range soil: small-scale metal distribution and its relation to preferential water flow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Wnsro%3D&md5=fab4fd61ff0c99d41536dafb66872115CAS |

[20]  S. Klitzke, F. Lang, Mobilization of soluble and dispersible Pb, As, and Sb in a polluted, organic-rich soil – effects of pH increase and counterion valency. J. Environ. Qual. 2009, 38, 933.
Mobilization of soluble and dispersible Pb, As, and Sb in a polluted, organic-rich soil – effects of pH increase and counterion valency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVGitb8%3D&md5=8db8f90d755b973921d5004c9c70bba6CAS |

[21]  A. Kabata-Pendias, H. Pendias, Trace Elements in Soils and Plants 2001 (CRC Press: Boca Raton, FL).

[22]  J. Lintschinger, B. Michalke, S. Schulte-Hostede, P. Schramel, Studies on speciation of antimony in soil contaminated by industrial activity. Int. J. Environ. Anal. Chem. 1998, 72, 11.
Studies on speciation of antimony in soil contaminated by industrial activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFygs74%3D&md5=6ea6dff4277dbc061c9af579fba9d0f2CAS |

[23]  M. Tighe, P. Lockwood, S. Wilson, Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid. J. Environ. Monit. 2005, 7, 1177.
Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ers73K&md5=6e9aa61b8c3380501ffafc7d272e52faCAS |

[24]  Best Management Practices for Pb at Outdoor Shooting Ranges 2001 (Environmental Protection Agency). Available at http://www.epa.gov/region2/waste/leadshot/download.htm [verified 14 January 2012].

[25]  L. K. Grønflaten, L. Amundsen, J. Frank, E. Steinnes, Influence of liming and vitality fertilization on trace element concentrations in Scots pine forest soil and plants. For. Ecol. Manage. 2005, 213, 261.
Influence of liming and vitality fertilization on trace element concentrations in Scots pine forest soil and plants.Crossref | GoogleScholarGoogle Scholar |

[26]  E. Lombi, R. E. Hamon, S. P. McGrath, M. J. McLaughlin, Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environ. Sci. Technol. 2003, 37, 979.
Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVWgtg%3D%3D&md5=e354da5d81bd5475e04cc08aa0146f40CAS |

[27]  E. Lombi, R. E. Hamon, G. Wieshammer, M. J. McLaughlin, S. P. McGrath, Assessment of the use of industrial by-products to remediate a copper/arsenic contaminated soil. J. Environ. Qual. 2004, 33, 902.
Assessment of the use of industrial by-products to remediate a copper/arsenic contaminated soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVylsL0%3D&md5=5a028b228c4b1122c4d887e61e0f665aCAS |

[28]  A. Buerkert, H. Marschner, Calcium and temperature effects on seedling exudation and root rot infection of common bean on an acid sandy soil. Plant Soil 1992, 147, 293.
Calcium and temperature effects on seedling exudation and root rot infection of common bean on an acid sandy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtVWis7w%3D&md5=766a493530b47b0286965b00215c9be5CAS |

[29]  S. Klitzke, F. Lang, M. Kaupenjohann, Increasing pH releases colloidal lead in a highly contaminated forest soil. Eur. J. Soil Sci. 2008, 59, 265.
Increasing pH releases colloidal lead in a highly contaminated forest soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslyrsro%3D&md5=e9b4df5bec123b2ef3ff9f3f67d3a7a1CAS |

[30]  J.-M. Séquaris, Modeling the effects of Ca2+ and clay-associated organic carbon on the stability of colloids from topsoils. J. Colloid Interface Sci. 2010, 343, 408.
Modeling the effects of Ca2+ and clay-associated organic carbon on the stability of colloids from topsoils.Crossref | GoogleScholarGoogle Scholar |

[31]  D. I. Kaplan, P. M. Bertsch, D. C. Adriano, Mineralogical and physicochemical differences between mobile and nonmobile colloidal phases in reconstructed pedons. Soil Sci. Soc. Am. J. 1997, 61, 641.
Mineralogical and physicochemical differences between mobile and nonmobile colloidal phases in reconstructed pedons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtV2htr8%3D&md5=bbc1ac48db7e72db4ca4b66338c53da5CAS |

[32]  M. Sadiq, Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut. 1997, 93, 117.
Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs12nur4%3D&md5=7fb9b0a6eac5cda076fe30eca04b546aCAS |

[33]  R. A. Dahlgren, D. J. Marrett, Organic carbon sorption in arctic and subalpine spodosol B horizons. Soil Sci. Soc. Am. J. 1991, 55, 1382.
Organic carbon sorption in arctic and subalpine spodosol B horizons.Crossref | GoogleScholarGoogle Scholar |

[34]  M. B. McBride, Environmental Chemistry of Soils 1994 (Oxford University Press: New York).

[35]  R. Kretzschmar, H. Sticher, Transport of humic-coated iron oxide colloids in a sandy soil: influence of Ca2+ and trace metals. Environ. Sci. Technol. 1997, 31, 3497.
Transport of humic-coated iron oxide colloids in a sandy soil: influence of Ca2+ and trace metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVamtL0%3D&md5=c026824826419a8c587b8defd7400d6cCAS |

[36]  World Reference Base for Soil Resources 1998 (Food and Agriculture Organization of the United Nations: Rome).

[37]  P. Burba, B. Aster, T. Nifant’eva, V. Shkinev, B. Y. Spivakov, Membrane filtration studies of aquatic humic substance and their metal species: a concise overview. Part 1. Analytical fractionation by means of sequential-stage ultrafiltration. Talanta 1998, 45, 977.
Membrane filtration studies of aquatic humic substance and their metal species: a concise overview. Part 1. Analytical fractionation by means of sequential-stage ultrafiltration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlaqt7w%3D&md5=a50bcb175c4a0fc33fd9f2ac30f447beCAS |

[38]  C. B. Tanner, M. L. Jackson, Nomographs of sedimentation times for soil particles under gravity or centrifugal acceleration. Soil Sci. Soc. Am. J. 1948, 12, 60.
| 1:CAS:528:DyaH1MXjsVSg&md5=49589a24430088a6e172e4b80c46904dCAS |

[39]  B. Jansen, K. G. J. Nierop, J. M. Verstraten, Mechanisms controlling the mobility of dissolved organic matter, aluminium and iron in podzol P horizons. Eur. J. Soil Sci. 2005, 56, 537.
Mechanisms controlling the mobility of dissolved organic matter, aluminium and iron in podzol P horizons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1Cnuro%3D&md5=209dbe52374d22ec3fb4ce38f47f9b39CAS |

[40]  P. Warwick, E. Inam, N. Evans, Arsenic’s interaction with humic acid. Environ. Chem. 2005, 2, 119.
Arsenic’s interaction with humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVChs7o%3D&md5=85bc323b55f1e698ded6ad9167b7d65aCAS |

[41]  J. Buschmann, A. Kappeler, U. Lindauer, D. Kistler, M. Berg, L. Sigg, Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminium. Environ. Sci. Technol. 2006, 40, 6015.
Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFaisr8%3D&md5=ecd30ceeb6b1e4cc682aca7bac46e411CAS |

[42]  M. Baalousha, M. F. V. D. Kammer, M. Motelica-Heino, H. S. Hilal, P. Le Coustumer, Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. J. Chromatogr. A 2006, 1104, 272.
Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVOjsw%3D%3D&md5=a78e94b90893505621468c2f681725c1CAS |

[43]  R. A. Rica, M. L. Jimenez, A. V. Delegada, Dynamic mobility of rod-like goethite particles. Langmuir 2009, 25, 10587.
Dynamic mobility of rod-like goethite particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVGksb8%3D&md5=728572a72ff5d73eeab20e901da38bcdCAS |

[44]  R. Turpeinen, J. Salminen, T. Kairesalo, Mobility and bioavailability of lead in contaminated boreal forest soil. Environ. Sci. Technol. 2000, 34, 5152.
Mobility and bioavailability of lead in contaminated boreal forest soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVaktrY%3D&md5=d83ffb45f8b7213789a55e3d7d306ef5CAS |

[45]  G. Tyler, T. Olsson, Concentrations of 60 elements in the soil solution as related to the soil acidity. Eur. J. Soil Sci. 2001, 52, 151.
Concentrations of 60 elements in the soil solution as related to the soil acidity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXislCrurY%3D&md5=fa90117a39a88b1792ded16d446ecf23CAS |

[46]  R. E. Hamon, E. Lombi, P. Fortunati, A. L. Nolan, M. J. McLaughlin, Coupling speciation and isotope dilution techniques to study arsenic mobilization in the environment. Environ. Sci. Technol. 2004, 38, 1794.
Coupling speciation and isotope dilution techniques to study arsenic mobilization in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1Wis7s%3D&md5=0e4dd14bc4e90ed554a333b03b6ce76fCAS |

[47]  E. Tipping, D. C. Higgins, The effect of adsorbed humic substances on the colloid stability of haematite particles. Colloids Surf. 1982, 5, 85.
The effect of adsorbed humic substances on the colloid stability of haematite particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlvVyktb8%3D&md5=6a3226ff4f8a39ff3bc03bc6716ab5c2CAS |

[48]  R. Kretzschmar, D. Hesterberg, H. Sticher, Effects of adsorbed humic acid on surface charge and flocculation of kaolinite. Soil Sci. Soc. Am. J. 1997, 61, 101.
Effects of adsorbed humic acid on surface charge and flocculation of kaolinite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtlShtLY%3D&md5=35493c241964c00774c1c6c002aa7a20CAS |

[49]  C. A. Johnson, H. Moench, P. Wersin, P. Kugler, C. Wenger, Solubility of antimony and other elements in samples taken from shooting ranges. J. Environ. Qual. 2005, 32, 248.

[50]  H. C. Flynn, A. A. Meharg, P. K. Bowyer, G. I. Paton, Antimony bioavailability in mine soils. Environ. Pollut. 2003, 124, 93.
Antimony bioavailability in mine soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis12gur0%3D&md5=791dc2096a8cd20dcacefaf31b73cba3CAS |

[51]  L. Citeau, I. Lamy, F. van Oort, F. Elsass, Nature des sols et nature des colloïdes circulant dans les eaux gravitaires: une etude in situ. C. R. Acad. Sci. II A 2001, 332, 657.
| 1:CAS:528:DC%2BD3MXls1GrtLc%3D&md5=98a60b76f2b32215f9cf2c4beea96ba9CAS |

[52]  C. Bethwell, Organische Substanz und ihr partikulären und adsorbierten Anteil im Feinsediment eines bergbaubeeinflussten Fließgewässers. Aktuelle Reihe 2004, 3, 109. Available at http://www-docs.tu-cottbus.de/gewaesserschutz/public/aktuelle_reihe/ar_3_2004/ar_03_2004_10_bethwell.pdf [verified 3 October 2012].

[53]  P. F. A. M. Römkens, J. Dolfing, Effect of Ca on the solubility and molecular size distribution of DOC and Cu binding in soil solution samples. Environ. Sci. Technol. 1998, 32, 363.
Effect of Ca on the solubility and molecular size distribution of DOC and Cu binding in soil solution samples.Crossref | GoogleScholarGoogle Scholar |

[54]  L. Celi, M. Presta, F. Ajmore-Marsan, E. Barberis, Effects of pH and electrolytes on inositol hexaphosphate interaction with goethite. Soil Sci. Soc. Am. J. 2001, 65, 753.
Effects of pH and electrolytes on inositol hexaphosphate interaction with goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFWktLg%3D&md5=79b0ed77970603a1bea82df5fc6d7068CAS |

[55]  C. L. Tiller, C. R. O’Melia, Natural organic matter and colloidal stability: models and measurements. Colloids Surf. A Physicochem. Eng. Asp. 1993, 73, 89.
Natural organic matter and colloidal stability: models and measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslyisL4%3D&md5=13b62c8320f5a4c9acb78013b14d7c2eCAS |