Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
COMMENT AND RESPONSE (Open Access)

Comment on ‘Possible contribution of triboelectricity to snow–air interactions’

Thorsten Bartels-Rausch A C and Martin Schneebeli B
+ Author Affiliations
- Author Affiliations

A Paul Scherrer Institute, Laboratory of Radiochemistry and Environmental Chemistry, CH-5232 Villigen PSI, Switzerland.

B WSL Institute for Snow and Avalanche Research SLF, CH-7260 Davos, Switzerland. Email: schneebeli@slf.ch

C Corresponding author. Email: thorsten.bartels-rausch@psi.ch




Thorsten Bartels-Rausch studied chemistry at the University of Würzburg, Germany, the Norwegian University of Science and Technology in Trondheim, Norway, and the Swiss Federal Institute of Technology in Zürich (ETH), Switzerland. In 2003, he received his Ph.D. from the University of Bern, Switzerland, for which he investigated the uptake of trace gases to ice surfaces. After a postdoctoral stay at the University of Toronto, he returned to Switzerland and joined the Surface Chemistry group of the Laboratory of Radiochemistry and Environmental Chemistry at the Paul Scherrer Institute, Villigen, Switzerland. His current activities include laboratory studies of mechanisms and kinetics of gas–ice partitioning and reactions in snow and ice.



Martin Schneebeli is a Senior Scientist with the WSL Institute for Snow and Avalanche Research in Davos, Switzerland. He received his Ph.D. in Soil Physics at ETH Zurich in 1991, before starting to work on snow. In recent years, the focus of his research group is on microstructural characterisation using in-situ tomography of snow and modelling snow properties, developing a better understanding of the processes from the micro- to the macroscale. Recent expeditions to Antarctica helped to understand the extremes of snow metamorphism.

Environmental Chemistry 9(2) 119-120 https://doi.org/10.1071/EN11147
Submitted: 30 November 2011  Accepted: 20 February 2012   Published:

Journal Compilation © CSIRO Publishing 2012 Open Access CC BY-NC-ND


References

Tkachenko E. Y., Kozachkov S. G. Possible contribution of triboelectricity to snow–air interactions. Environmental Chemistry
Possible contribution of triboelectricity to snow–air interactionsCrossref | GoogleScholarGoogle Scholar |

Grannas A. M., Jones A. E., Dibb J. E., Ammann M., Anastasio C., Beine H., Bergin M. H., Bottenheim J., Boxe C. S., Carver G., Chen G., Crawford J. H., Domine F., Frey M. M., Guzman M. I., Heard D., Helmig D., Hoffmann M. R., Honrath R., Huey L. G., Hutterli M., Jacobi H.-W., Klan P., Lefer B., McConnell J., Plane J., Sander R., Savarino J., Shepson P. B., Simpson W., Sodeau J. R., von Glasow R., Weller R., Wolff E. W., Zhu T. (2007). An overview of snow photochemistry: evidence, mechanisms and impacts.. Atmos. Chem. Phys. 7, 4329
An overview of snow photochemistry: evidence, mechanisms and impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWiurbJ&md5=f786fe06dc9b02ce2b34b5462fd33fcfCAS |

Davis D. D., Seelig J., Huey G., Crawford J., Chen G., Wang Y., Buhr M., Helmig D., Neff W., Blake D., Arimoto R., Eisele F. (2008). A reassessment of Antarctic plateau reactive nitrogen based on ANTCI 2003 airborne and ground based measurements.. Atmos. Environ. 42, 2831
A reassessment of Antarctic plateau reactive nitrogen based on ANTCI 2003 airborne and ground based measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFOks74%3D&md5=239e1d5ed3503da0837f34a17f3fb043CAS |

Helmig D., Johnson B., Oltmans S. J., Neff W., Eisele F., Davis D. D. (2008). Elevated ozone in the boundary layer at South Pole.. Atmos. Environ. 42, 2788
Elevated ozone in the boundary layer at South Pole.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFOksrk%3D&md5=17a73579d52ca678519e4a9b41a5468fCAS |

Helmig D., Johnson B. J., Warshawsky M., Morse T., Neff W. D., Eisele F., Davis D. D. (2008). Nitric oxide in the boundary-layer at South Pole during the Antarctic Tropospheric Chemistry Investigation (ANTCI).. Atmos. Environ. 42, 2817
Nitric oxide in the boundary-layer at South Pole during the Antarctic Tropospheric Chemistry Investigation (ANTCI).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFOksrc%3D&md5=3ecf66746b73d87cc5ce0acece9e7059CAS |

Neff W., Helmig D., Grachev A., Davis D. (2008). A study of boundary layer behavior associated with high NO concentrations at the South Pole using a minisodar, tethered balloon, and sonic anemometer.. Atmos. Environ. 42, 2762
A study of boundary layer behavior associated with high NO concentrations at the South Pole using a minisodar, tethered balloon, and sonic anemometer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFOksrs%3D&md5=1c412196b38af64bc811a18341d2fd25CAS |

Bartels-Rausch T., Bergeron V., Cartwright J. H. E., Escribano R., Gutierrez P. J., Haapala J., Kuhs W. F., Pettersson J. B. C., Price S. D., Sainz-Diaz C. I., Stokes D., Strazzulla G., Thomson E. S., Trinks H., Uras-Aytemiz N. Ice structures, patterns and processes: a review across the ice fields.. Rev. Mod. Phys.

Asmi E., Frey A., Virkkula A., Ehn M., Manninen H. E., Timonen H., Tolonen-Kivimäki O., Aurela M., Hillamo R., Kulmala M. (2010). Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation.. Atmos. Chem. Phys. 10, 4253
Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFWhurg%3D&md5=d7f107020797c5073fddcd6be6caaf22CAS |

Palm S. P., Yang Y., Spinhirne J. D., Marshak A. (2011). Satellite remote sensing of blowing snow properties over Antarctica.. J. Geophys. Res. 116, D16123
Satellite remote sensing of blowing snow properties over Antarctica.Crossref | GoogleScholarGoogle Scholar |

Jones A. E., Andersson P., Begoin M., Brough N., Hutterli M., Marshall G., Richter A., Roscoe H., Wolff E. W. (2009). BrO, blizzards, and drivers of polar tropospheric ozone depletion events.. Atmos. Chem. Phys. 9, 4639
BrO, blizzards, and drivers of polar tropospheric ozone depletion events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGns7bJ&md5=23280a44ea601b63feed29b3a54d18d8CAS |

Domine F., Albert M., Huthwelker T., Jacobi H. W., Kokhanovsky A. A., Lehning M., Picard G., Simpson W. R. (2008). Snow physics as relevant to snow photochemistry.. Atmos. Chem. Phys. 8, 171
Snow physics as relevant to snow photochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVyrsrY%3D&md5=a97296df09399ce63febc8cd2530f4f8CAS |

Pinzer B., Schneebeli M. (2009). Snow metamorphism under alternating temperature gradients: morphology and recrystallization in surface snow.. Geophys. Res. Lett. 36, L23503
Snow metamorphism under alternating temperature gradients: morphology and recrystallization in surface snow.Crossref | GoogleScholarGoogle Scholar |

Dibb J. E., Albert M., Anastasio C., Atlas E., Beyersdorf A. J., Blake N. J., Blake D. R., Bocquet F., Burkhart J. F., Chen G., Cohen L., Conway T. J., Courville Z., Frey M. M., Friel D. K., Galbavy E. S., Hall S., Hastings M. G., Helmig D., Greg Huey L., Hutterli M. A., Jarvis J. C., Lefer B. L., Meinardi S., Neff W., Oltmans S. J., Sherwood Rowland F., Sjostedt S. J., Steig E. J., Swanson A. L., Tanner D. J. (2007). An overview of air–snow exchange at Summit, Greenland: recent experiments and findings.. Atmos. Environ. 41, 4995
An overview of air–snow exchange at Summit, Greenland: recent experiments and findings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Krurc%3D&md5=b7d2bc127d5539934346aaacf40bf273CAS |

Bartlett S. J., Lehning M. (2011). A theoretical assessment of heat transfer by ventilation in homogeneous snowpacks.. Water Resour. Res. 47, W04503
A theoretical assessment of heat transfer by ventilation in homogeneous snowpacks.Crossref | GoogleScholarGoogle Scholar |

Thomas J. L., Stutz J., Lefer B., Huey L. G., Toyota K., Dibb J. E., von Glasow R. (2011). Modeling chemistry in and above snow at Summit, Greenland – Part 1. Model description and results.. Atmos. Chem. Phys. 11, 4899
Modeling chemistry in and above snow at Summit, Greenland – Part 1. Model description and results.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWlt7zK&md5=88625c967d4c97365641644d118f7239CAS |

Leonard K. C., Jacobs S. S., Cullather R. I. (2008). Mass balance implications of wind-transported snow loss from Antarctic ice shelves.. Eos Trans. AGU 89, C31D-0541

Scarchilli C., Frezzotti M., Grigioni P., Silvestri L., Agnoletto L., Dolci S. (2010). Extraordinary blowing snow transport events in East Antarctica.. Clim. Dyn. 34, 1195
Extraordinary blowing snow transport events in East Antarctica.Crossref | GoogleScholarGoogle Scholar | [Published online ahead of print 11 June 2009]