Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Modelling of arsenate retention from aqueous solutions by living coryneform double-mutant bacteria

Efren Ordoñez A , Almudena F. Villadangos A , María Fiuza A , Fernando J. Pereira B , Jose A. Gil A , Luis M. Mateos A and A. Javier Aller B C
+ Author Affiliations
- Author Affiliations

A Department of Molecular Biology, Area of Microbiology, Faculty of Biological and Environmental Sciences, University of León, E-24071 León, Spain.

B Department of Applied Chemistry and Physics, Area of Analytical Chemistry, Faculty of Biological and Environmental Sciences, University of León, E-24071 León, Spain.

C Corresponding author. Email: aj.aller@unileon.es

Environmental Chemistry 9(2) 121-129 https://doi.org/10.1071/EN11072
Submitted: 1 June 2011  Accepted: 10 November 2011   Published:

Environmental context. Industrial development has favoured the release of toxic elements to the environment and monitoring and assessment their environmental impact are key points. An important aspect of understanding these concerns is to evaluate how toxic substances interact with microorganisms, which has critical implications in the environment. Current studies show that heavy metals have the potential to affect bacterial viability, although a great deal remains to be understood concerning metal speciation using engineered bacterial cells.

Abstract. Modelling of the arsenate (AsV) retention from aqueous solutions by a living, genetically modified coryneform bacterium (Corynebacterium glutamicum ArsC1–C2) was evaluated. The bacterium used was a double mutant strain unable to reduce arsenate to arsenite. Batch experiments were carried out to study the effects of high initial AsV concentrations, retention times and temperatures on the retention process. Arsenate retention kinetics was modelled using pseudo-second-order and Elovich models. Both models provided high coefficients of determination, but better applicability of the Elovich model was confirmed using the Z function. A useful generalised predictive equation, allowing evaluation of the simultaneous effects of time and the initial AsV concentration on the retention process, was proposed. The retention equilibrium for a wide concentration range of arsenate showed a mechanistic process underlying chemical-nature retention with the experimental data strongly consistent with the Langmuir isotherm. Thermodynamic studies defined the negative free energy changes and demonstrated the spontaneity of the retention process. Positive values for both enthalpy and entropy were indicative of endothermic retention and a high affinity for AsV by the bacteria. The high maximum retained quantity, 2.0 mg AsV g–1 bacteria, confirmed the bacterium’s high affinity for this arsenic species.

Additional keywords: Elovich equation, equilibrium retention, kinetic studies.


References

Langdon C. J., Piearce T. G., Meharg A. A., Semple K. T. (2003). Interactions between earthworms and arsenic in the soil environment: a review.. Environ. Pollut. 124, 361
Interactions between earthworms and arsenic in the soil environment: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFWlsbo%3D&md5=56782658949ed0d328cf0b27e937a1deCAS |

USEPA (2001). National Primary drinking water regulations. Arsenic and clarifications to compliance and new source contaminants monitoring.. Federal Register 66, 6975.

Guidelines for drinking water quality, 2nd edn 1993 (World Health Organization: Geneva, Switzerland).

Duker A. A., Carranza E. J. M., Hale M. (2005). Arsenic geochemistry and health.. Environ. Int. 31, 631
Arsenic geochemistry and health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslSlu7s%3D&md5=cdb0ebc4d792225fd4a833071341acc9CAS |

Smedley P. L., Kinniburg D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters.. Appl. Geochem. 17, 517
A review of the source, behaviour and distribution of arsenic in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=81086202fe4ea3f971b0edf0d3242d3bCAS |

Fattorini D., Alonso-Hernandez C. M., Diaz-Asencio M., Munoz-Caravaca A., Pannacciulli F. G., Tangherlini M., Regoli F. (2004). Chemical speciation of arsenic in different marine organisms: Importance in monitoring studies.. Mar. Environ. Res. 58, 845
Chemical speciation of arsenic in different marine organisms: Importance in monitoring studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkslShsLs%3D&md5=3f54ef4f3a9a026ad9f5a278b0c7f2f5CAS |

Jain C. K., Ali I. (2000). Arsenic: occurrence, toxicity and speciation techniques.. Water Res. 34, 4304
Arsenic: occurrence, toxicity and speciation techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFCrs78%3D&md5=565ef1009e39b31ae10736e1622d48ebCAS |

Zhao Y., Zouboulis A. I., Matis K. A. (1996). Removal of molybdate and arsenate from aqueous solutions by flotation.. Sep. Sci. Technol. 31, 769
Removal of molybdate and arsenate from aqueous solutions by flotation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFWisLg%3D&md5=a43c790db5169fcb5530d6d428a397cfCAS |

Sancha A. M. (2000). Removal of arsenic from drinking water supplies: Chile experience.. Water Supply 18, 621.

Viraraghavan T., Subramanian K. S., Aruldoss J. A. (1999). Arsenic in drinking water – problems and solutions.. Water Sci. Technol. 40, 69
Arsenic in drinking water – problems and solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsl2gt7Y%3D&md5=6e74ea3cc87d0cb7f909c91af3588daeCAS |

Thirunavukkarasu O. S., Viraraghavan T., Subramanian K. S., Chaalal O., Islam M. R. (2005). Arsenic removal in drinking water – impacts and novel removing technologies.. Energy Sources 27, 209
Arsenic removal in drinking water – impacts and novel removing technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlSms7Y%3D&md5=a2422863be5a24883763827200e7c757CAS |

Daus B., Wennrich R., Weiss H. (2004). Sorption materials for arsenic removal from water: a comparative study.. Water Res. 38, 2948
Sorption materials for arsenic removal from water: a comparative study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFOntbk%3D&md5=111f21c0330b540d933606ab00c23eeaCAS |

Hlavay J., Polyák K. (2005). Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water.. J. Colloid Interface Sci. 284, 71
Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvFyhurg%3D&md5=645429af5bfe42c5f59237e7d4ef1f78CAS |

Subramanian K. S., Viraraghavan T., Tanjore S. (1997). Manganese greensand for removal of arsenic in drinking water.. Water Qual. Res. J. Canada 32, 551.

Huang C. P., Fu P. L. (1984). Treatment of arsenic(V) containing water by activated carbon process.. J. Water Pollut. Control Fed. 56, 233.

Goswami D., Das A. E. (2000). Removal of arsenic from drinking water using modified fly-ash bed.. Int. J. Water 1, 61
Removal of arsenic from drinking water using modified fly-ash bed.Crossref | GoogleScholarGoogle Scholar |

Boddu V. M., Abburi K., Talbott J. L., Smith E. D., Haasch R. (2008). Removal of arsenic(III) and arsenic(V) from aqueous medium using chitosan-coated biosorbent.. Water Res. 42, 633
Removal of arsenic(III) and arsenic(V) from aqueous medium using chitosan-coated biosorbent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFaisg%3D%3D&md5=4d06b054d16e8a4a079f26a6477da644CAS |

Pokhrel D., Viraraghavan T. (2006). Arsenic removal from aqueous solutions by a modified fungal biomass.. Water Res. 40, 549
Arsenic removal from aqueous solutions by a modified fungal biomass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVahsro%3D&md5=281b6cc87b10841e539c622ffbb5f35cCAS |

Aller A. J., Castro M. A. (2006). Live bacterial cells as analytical tools for speciation analysis: Hypothetical or practical?. Trends Anal. Chem. 25, 887
Live bacterial cells as analytical tools for speciation analysis: Hypothetical or practical?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCrsb%2FI&md5=7f1d04dfcc096849098e36311c92040bCAS |

Silver S., Phung L. T. (1996). Bacterial heavy metal resistance: new surprises.. Annu. Rev. Microbiol. 50, 753
Bacterial heavy metal resistance: new surprises.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFGht78%3D&md5=174390adef9995db1dddf7bfb2802fb6CAS |

Cervantes C., Ji G., Ramirez J. L., Silver S. (1994). Resistance to arsenic compounds in microorganisms.. FEMS Microbiol. Rev. 15, 355
Resistance to arsenic compounds in microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivVKlt7w%3D&md5=3598a77b4b897e49e139150c0d2bc785CAS |

Kostal J., Yang T., Wu C. H., Mulchandani A., Chen W. (2004). Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR.. Appl. Environ. Microbiol. 70, 4582
Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1eltLY%3D&md5=fda17966a5260f83aea7ba49a8a2fb19CAS |

Petänen T., Romantschuk M. (2003). Toxicity and bioavailability to bacteria of particle-associated arsenite and mercury.. Chemosphere 50, 409
Toxicity and bioavailability to bacteria of particle-associated arsenite and mercury.Crossref | GoogleScholarGoogle Scholar |

Ramanathan S., Shi W., Rosen B. P., Daunert S. (1997). Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria.. Anal. Chem. 69, 3380
Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslKhs7o%3D&md5=7991d3a68a5e0c02a018e80a74e8ad11CAS |

Mateos L. M., Ordóñez E., Letek M., Gil J. A. (2006). Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic.. Int. Microbiol. 9, 207.

Ordóñez E., Letek M., Valbuena N., Gil J. A., Mateos L. M. (2005). Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.. Appl. Environ. Microbiol. 71, 6206
Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032.Crossref | GoogleScholarGoogle Scholar |

Ordóñez E., Van Belle K., Roos G., De Galan S., Letek M., Gil J. A., Wyns L., Mateos L. M., Messens J. (2009). Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange.. J. Biol. Chem. 284, 15 107
Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange.Crossref | GoogleScholarGoogle Scholar |

Feo J. C., Ordoñez E., Letek M., Castro M. A., Muñoz M. I., Gil J. A., Mateos L. M., Aller A. J. (2007). Retention of inorganic arsenic by coryneform mutant strains.. Water Res. 41, 531
Retention of inorganic arsenic by coryneform mutant strains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlKhsQ%3D%3D&md5=13cd3fb25d2abb79cc4462190c8a5b23CAS |

Tawfik D. S., Viola R. E. (2011). Arsenate replacing phosphate: alternative life chemistries and ion promiscuity.. Biochemistry 50, 1128
Arsenate replacing phosphate: alternative life chemistries and ion promiscuity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSmt78%3D&md5=8a377a77e2e5a1c4fd5c26bc182c5655CAS |

Fu H. L., Meng Y., Ordóñez E., Villadangos A. F., Bhattacharjee H., Gil J. A., Mateos L. M., Rosen B. P. (2009). Properties of arsenite efflux permeases (Acr3) from Alkaliphilus metalliredigens and Corynebacterium glutamicum.. J. Biol. Chem. 284, 19 887
Properties of arsenite efflux permeases (Acr3) from Alkaliphilus metalliredigens and Corynebacterium glutamicum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1egurc%3D&md5=e3e4b87cdc6ef5d8035a8c70b2b0db77CAS |

Villadangos A. F., Ordóñez E., Muñoz M. I., Pastrana I. M., Fiuza M., Gil J. A., Mateos L. M., Aller A. J. (2010). Retention of arsenate using genetically modified coryneform bacteria and determination of arsenic in solid samples by ICP-MS.. Talanta 80, 1421
Retention of arsenate using genetically modified coryneform bacteria and determination of arsenic in solid samples by ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhu7%2FN&md5=e72a6e42fae50c17ac4a9d5cb75c127aCAS |

Kaneko H., Sakaguchi K. (1979). Fusion of protoplasts and genetic recombination of Brevibacterium flavum.. Agric. Biol. Chem. 43, 1007
Fusion of protoplasts and genetic recombination of Brevibacterium flavum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXktlGmtbo%3D&md5=afeafbf64527be805839773c98b81fd3CAS |

Fernández-González C., Gil J. A., Mateos L. M., Schwarzer A., Schäfer A., Kalinowski J., Pühler A., Martín J. F. (1996). Construction of L-lysine-overproducing strains of Brevibacterium lactofermentum by targeted disruption of the hom and thrB genes.. Appl. Microbiol. Biotechnol. 46, 554
Construction of L-lysine-overproducing strains of Brevibacterium lactofermentum by targeted disruption of the hom and thrB genes.Crossref | GoogleScholarGoogle Scholar |

Ho Y. S., McKay G. (1998). Sorption of dye from aqueous solution by peat.. Chem. Eng. J. 70, 115.

Ho Y. S., McKay G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat.. Water Res. 34, 735
The kinetics of sorption of divalent metal ions onto sphagnum moss peat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntVKjtg%3D%3D&md5=e032cbc579bc68ddbacbba5503709616CAS |

Ho Y. S. (2006). Review of second-order models for the adsorption systems.. J. Hazard. Mater. 136, 681
Review of second-order models for the adsorption systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVeju7o%3D&md5=61371aa37b8e20acaab6af7b20a10915CAS |

Zeldowitsch J. (1934). Über den mechanismus der katalytischen oxydation von CO an MnO2.. Acta Physicochim. URSS 1, 449.

Lagergren S. (1898). About the theory of so-called adsorption of soluble substances.. K. Sven. Vetenskapsakad. Handl. 24, 1.

Ho Y. S. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions.. Scientometrics 59, 171
Citation review of Lagergren kinetic rate equation on adsorption reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFKrt7o%3D&md5=506051a9b76883f6edd5da9e3d105058CAS |

Ungarish M., Aharoni C. (1981). Kinetics of chemisorption. Deducing kinetic laws from experimental data.. J. Chem. Soc., Faraday Trans. I 77, 975
Kinetics of chemisorption. Deducing kinetic laws from experimental data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktFehtrs%3D&md5=12f51408eb0666596fc49a870996a4dcCAS |

Langmuir I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum.. J. Am. Chem. Soc. 40, 1361
The adsorption of gases on plane surfaces of glass, mica and platinum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaC1cXht1KgsA%3D%3D&md5=3d8bfa8b5406c588e3f234690ec29864CAS |

Temkin M. J., Pyzhev V. (1940). Recent modifications to Langmuir isotherms.. Acta Physicochim. URSS 12, 217.

Aller A. J., Robles L. C. (1998). Speciation of selenomethionine and selenourea using living bacterial cells.. Analyst 123, 919
Speciation of selenomethionine and selenourea using living bacterial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislyku78%3D&md5=02f0134140cca3b70f25bbd68fa17d11CAS |

Aller A. J., Lumbreras J. M., Robles L. C., Fernández G. M. (1996). Stability of bacterium–mercury complexes and speciation of soluble inorganic mercury species.. Anal. Chim. Acta 330, 89
Stability of bacterium–mercury complexes and speciation of soluble inorganic mercury species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xltleisbs%3D&md5=4d6a603408b619a29a8ce60559a5f485CAS |

Hall K. R., Eagleton L. C., Acrivos A., Vermeulen T. (1966). Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions.. Ind. Eng. Chem. Fundam. 5, 212
Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XktVajurk%3D&md5=2307f04aea0cb6a3988fdfe833e9a7f5CAS |

Freundlich H. (1906). Über die adsorption in lösungen.. Z. Phys. Chem. 57A, 385.

Dubinin M. M., Radushkevich L. V. (1947). The equation of the characteristic curve of activated charcoal.. Proc. Acad. Sci. USSR Phys. Chem. Sect. 55, 331.

Khan A. A., Singh R. P. (1987). Adsorption thermodynamics of carbofuran on SnIV arsenosilicate in H+, Na+ and Ca2+ forms.. Colloids Surf. 24, 33
Adsorption thermodynamics of carbofuran on SnIV arsenosilicate in H+, Na+ and Ca2+ forms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXks1Ggtrs%3D&md5=43d057f83f9c0f96b819320b14b6a353CAS |