Single particle analysis of amines in ambient aerosol in Shanghai
Yuanlong Huang A , Hong Chen A , Lin Wang A , Xin Yang A B and Jianmin Chen AA Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.
B Corresponding author. Email: yangxin@fudan.edu.cn
Environmental Chemistry 9(3) 202-210 https://doi.org/10.1071/EN11145
Submitted: 28 November 2011 Accepted: 20 January 2012 Published: 26 March 2012
Journal Compilation © CSIRO Publishing 2012 Open Access CC BY-NC-ND
Environmental context. Amines, a group of basic organic compounds, play important roles in atmospheric chemistry. We studied their distribution in ambient aerosols at the single particle level, and found that high relative humidity and strong particle acidity can attract more amines from the gas phase to particles. Amines may account for a significant part of organic mass in aerosols in areas with high emissions of sulfur dioxide and nitrogen oxides.
Abstract. An aerosol time-of-flight mass spectrometer was deployed in urban Shanghai to analyse amine-containing particles during two separate sampling periods, 1–9 August 2007 and 22–27 December 2009. Amine-containing particles are identified by a mass spectrometric marker at m/z 86 [NCH2(C2H5)2+] and classified into six major particle types to explore their possible origins. The number fraction of amine-containing particles in winter was much higher than in summer (23.4 v. 4.4 %), which can be explained by preferred gas-to-particle partitioning of gaseous amines at lower temperatures. Mass spectrometric patterns show the strong acidity of particles collected in December 2009, suggesting the acid–base reaction pathway might also contribute to the high concentration of amine aerosol in winter. Two fog episodes and two after-rain episodes of amine-containing particle bursts were observed in August 2007. Tightly correlated number fractions of sulfate- and amine-containing particles in all these episodes reveal that high relative humidity greatly enhances particulate amine formation based on acid–base reaction and subsequent particle growth. Our observations suggest that amines may account for significant parts of secondary organic mass in heavily polluted areas.
References
[1] B. J. Finlayson-Pitts, J. N. Pitts, Particles in the troposphere, in Chemistry of the Upper and Lower Atmosphere 2000 (Academic Press: San Diego, CA).[2] M. Kanakidou, J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielsen, E. Swietlicki, J. P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G. K. Moortgat, R. Winterhalter, C. E. L. Myhre, K. Tsigaridis, E. Vignati, E. G. Stephanou, J. Wilson, Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 2005, 5, 1053.
| Organic aerosol and global climate modelling: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrtbw%3D&md5=0b28a8d31bcdc89aefbae127bbbe1c32CAS |
[3] J. H. Kroll, J. H. Seinfeld, Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 2008, 42, 3593.
| Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Kksbs%3D&md5=e4081486255a7e6de6be34deb1620aecCAS |
[4] M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, Th. F. Mentel, A. Monod, A. S. H. Prévôt, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, J. Wildt, The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155.
| The formation, properties and impact of secondary organic aerosol: current and emerging issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhs77M&md5=0437ae491e64eca2afaa26d3b70e085eCAS |
[5] X. Ge, A. S. Wexler, S. L. Clegg, Atmospheric amines – Part I. A review. Atmos. Environ. 2011, 45, 524.[Published online ahead of print 15 October 2010]
| Atmospheric amines – Part I. A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVGktg%3D%3D&md5=888536eedd7314339eabbbb3179e07f7CAS |
[6] X. Ge, A. S. Wexler, S. L. Clegg, Atmospheric amines – Part II. Thermodynamic properties and gas/particle partitioning. Atmos. Environ. 2011, 45, 561.[Published online ahead of print 15 October 2010]
| Atmospheric amines – Part II. Thermodynamic properties and gas/particle partitioning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVGkug%3D%3D&md5=c49caa6c447f16e5ef61b2a298b562a3CAS |
[7] G. W. Schade, P. J. Crutzen, Emission of aliphatic amines from animal husbandry and their reactions: potential source of N2O and HCN. J. Atmos. Chem. 1995, 22, 319.
| Emission of aliphatic amines from animal husbandry and their reactions: potential source of N2O and HCN.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslCqt7w%3D&md5=5db1c774a625e7240b4d1dc8991f1a41CAS |
[8] J. Leach, A. Blanch, A. C. Bianchi, Volatile organic compounds in an urban airborne environment adjacent to a municipal incinerator, waste collection centre and sewage treatment plant. Atmos. Environ. 1999, 33, 4309.
| Volatile organic compounds in an urban airborne environment adjacent to a municipal incinerator, waste collection centre and sewage treatment plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFyit70%3D&md5=98f143b8e74fa8359419591b6aa662b6CAS |
[9] M. C. Facchini, S. Decesari, M. Rinaldi, C. Carbone, E. Finessi, M. Mircea, S. Fuzzi, F. Moretti, E. Tagliavini, D. Ceburnis, C. D. O'Dowd, Important source of marine secondary organic aerosol from biogenic amines. Environ. Sci. Technol. 2008, 42, 9116.
| Important source of marine secondary organic aerosol from biogenic amines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCgtbfL&md5=2c4e553e7f4cd0d2a7c0f6a6b51bd33eCAS |
[10] S. H. Cadle, P. A. Mulawa, Low-molecular-weight aliphatic amines in exhaust from catalyst-equipped cars. Environ. Sci. Technol. 1980, 14, 718.
| Low-molecular-weight aliphatic amines in exhaust from catalyst-equipped cars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlvFWhs7s%3D&md5=9b1f0503de58b84623a48bf4a147329aCAS |
[11] Y. Miyazaki, K. Kawamura, M. Sawano, Size distributions of organic nitrogen and carbon in remote marine aerosols: evidence of marine biological origin based on their isotopic ratios. Geophys. Res. Lett. 2010, 37, L06803.
| Size distributions of organic nitrogen and carbon in remote marine aerosols: evidence of marine biological origin based on their isotopic ratios.Crossref | GoogleScholarGoogle Scholar |
[12] A. Sorooshian, L. T. Padró, A. Nenes, G. Feingold, A. McComiskey, S. P. Hersey, H. Gates, H. H. Jonsson, S. D. Miller, G. L. Stephens, R. C. Flagan, J. H. Seinfeld, On the link between ocean biota emissions, aerosol, and maritime clouds: airborne, ground, and satellite measurements off the coast of California. Global Biogeochem. Cycles 2009, 23, GB4007.
| On the link between ocean biota emissions, aerosol, and maritime clouds: airborne, ground, and satellite measurements off the coast of California.Crossref | GoogleScholarGoogle Scholar |
[13] S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, J. H. Seinfeld, Secondary aerosol formation from atmospheric reactions of aliphatic amines. Atmos. Chem. Phys. 2007, 7, 2313.
| Secondary aerosol formation from atmospheric reactions of aliphatic amines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1ygsLg%3D&md5=03ebfe57d8d4e98dd0f347792fc450b7CAS |
[14] A. Sorooshian, S. M. Murphy, S. Hersey, H. Gates, L. T. Padro, A. Nenes, F. J. Brechtel, H. Jonsson, R. C. Flagan, J. H. Seinfeld, Comprehensive airborne characterization of aerosol from a major bovine source. Atmos. Chem. Phys. 2008, 8, 5489.
| Comprehensive airborne characterization of aerosol from a major bovine source.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCnur%2FI&md5=a8b83ed820132bf354ee301c8aaa92d6CAS |
[15] A. Van Neste, R. A. Duce, C. Lee, Methylamines in the marine atmosphere. Geophys. Res. Lett. 1987, 14, 711.
| Methylamines in the marine atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlvVSmurk%3D&md5=ba96dcf87d82cfeb1ac6901a4bbc8d3aCAS |
[16] N. E. Rabaud, S. E. Ebeler, L. L. Ashbaugh, R. G. Flocchini, Characterization and quantification of odorous and non-odorous volatile organic compounds near a commercial dairy in California. Atmos. Environ. 2003, 37, 933.
| Characterization and quantification of odorous and non-odorous volatile organic compounds near a commercial dairy in California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Wguro%3D&md5=a3b21f03b6c2ba53e08d2e1050c72376CAS |
[17] S. Angelino, D. T. Suess, K. A. Prather, Formation of aerosol particles from reactions of secondary and tertiary alkylamines: characterization by aerosol time-of-flight mass spectrometry. Environ. Sci. Technol. 2001, 35, 3130.
| Formation of aerosol particles from reactions of secondary and tertiary alkylamines: characterization by aerosol time-of-flight mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFSis7Y%3D&md5=ea86c39ce213d4aec8e2ca75455a51dcCAS |
[18] T. B. Nguyen, J. Laskin, A. Laskin, S. A. Nizkorodov, Nitrogen-containing organic cmopounds and oligomers in secondary organic aerosol formed by photooxidation of isoprene. Environ. Sci. Technol. 2011, 45, 6908.
| 1:CAS:528:DC%2BC3MXpt1Cjsr8%3D&md5=b1d210602638999a949c998a5e63fad8CAS |
[19] P. J. Silva, M. E. Erupe, D. Price, J. Elias, Q. G. J. Malloy, Q. Li, B. Warren, D. R. Cocker, Trimethylamine as precursor to secondary organic aerosol formation via nitrate radical reaction in the atmosphere. Environ. Sci. Technol. 2008, 42, 4689.
| Trimethylamine as precursor to secondary organic aerosol formation via nitrate radical reaction in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Sqs78%3D&md5=546a16bf6a32c8d9c41c311e0e9279caCAS |
[20] Q. G. J. Malloy, L. Qi, B. Warren, D. R. Cocker, M. E. Erupe, P. J. Silva, Secondary organic aerosol formation from primary aliphatic amines with NO3 radical. Atmos. Chem. Phys. 2009, 9, 2051.
| Secondary organic aerosol formation from primary aliphatic amines with NO3 radical.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1yisrc%3D&md5=d62bdc32457486717daaacff0b9b67d0CAS |
[21] D. O. De Haan, A. L. Corrigan, K. W. Smith, D. R. Stroik, J. J. Turley, F. E. Lee, M. A. Tolbert, J. L. Jimenez, K. E. Cordova, G. R. Ferrell, Secondary organic aerosol-forming reactions of glyoxal with amino acids. Environ. Sci. Technol. 2009, 43, 2818.
| Secondary organic aerosol-forming reactions of glyoxal with amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFyru7Y%3D&md5=5d710d9662123302670b77e5d8d8a4a8CAS |
[22] D. O. De Haan, L. N. Hawkins, J. A. Kononenko, J. J. Turley, A. L. Corrigan, M. A. Tolbert, J. L. Jimenez, Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets. Environ. Sci. Technol. 2011, 45, 984.
| Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFygtL7J&md5=c17ba561d56e5147bf1048b3e21c4e70CAS |
[23] P. V. Tan, G. J. Evans, J. Tsai, S. Owega, M. S. Fila, O. Malpica, J. R. Brook, On-line analysis of urban particulate matter focusing on elevated wintertime aerosol concentrations. Environ. Sci. Technol. 2002, 36, 3512.
| On-line analysis of urban particulate matter focusing on elevated wintertime aerosol concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVShu7k%3D&md5=6997ab965b69c15f9b94363065f88024CAS |
[24] H. Yang, J. Xu, W. Wu, C. Wan, J. Yu, Chemical characterization of water-soluble organic aerosols at Jeju Island collected during ACE-Asia. Environ. Chem. 2004, 1, 13.
| Chemical characterization of water-soluble organic aerosols at Jeju Island collected during ACE-Asia.Crossref | GoogleScholarGoogle Scholar |
[25] D. C. S. Beddows, R. J. Donovan, R. M. Harrison, M. R. Heal, R. P. Kinnersley, M. D. King, D. H. Nicholson, K. C. Thompson, Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time-of-flight mass spectrometry. J. Environ. Monit. 2004, 6, 124.
| Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time-of-flight mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVCmtg%3D%3D&md5=74acf90a01f01ee6c9ce38e1750d35fbCAS |
[26] J. M. Mäkelä, S. Yli-Koivisto, V. Hiltunen, W. Seidl, E. Swietlicki, K. Teinilä, M. Sillanpää, I. K. Koponen, J. Paatero, K. Rosman, K. Hämeri, Chemical composition of aerosol during particle formation events in boreal forest. Tellus B Chem. Phys. Meterol. 2001, 53, 380.
| Chemical composition of aerosol during particle formation events in boreal forest.Crossref | GoogleScholarGoogle Scholar |
[27] J. N. Smith, M. J. Dunn, T. M. VanReken, K. Iida, M. R. Stolzenburg, P. H. McMurry, L. G. Huey, Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: evidence for an important role for organic species in nanoparticle growth. Geophys. Res. Lett. 2008, 35, L04808.
| Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: evidence for an important role for organic species in nanoparticle growth.Crossref | GoogleScholarGoogle Scholar |
[28] J. N. Smith, K. C. Barsanti, H. R. Friedli, M. Ehn, M. Kulmala, D. R. Collins, J. H. Scheckman, B. J. Williams, P. H. McMurry, Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proc. Natl. Acad. Sci. USA 2010, 107, 6634.
| Observations of aminium salts in atmospheric nanoparticles and possible climatic implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSjsLw%3D&md5=b7e5b71e1d39e5e5dd60570e03d3523dCAS |
[29] J. M. Creamean, A. P. Ault, J. E. Ten Hoeve, M. Z. Jacobson, G. C. Roberts, K. A. Prather, Measurements of aerosol chemistry during new particle formation events at a remote rural mountainsite. Environ. Sci. Technol. 2011, 45, 8208.
| Measurements of aerosol chemistry during new particle formation events at a remote rural mountainsite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWmu73P&md5=f5e4d46009fd13e432be267f8b88c287CAS |
[30] T. Kurtén, V. Loukonen, H. Vehkamäki, M. Kulmala, Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmos. Chem. Phys. 2008, 8, 4095.
| Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia.Crossref | GoogleScholarGoogle Scholar |
[31] C. A. Zordan, S. Wang, M. V. Johnston, Time-resolved chemical composition of individual nanoparticles in urban air. Environ. Sci. Technol. 2008, 42, 6631.
| Time-resolved chemical composition of individual nanoparticles in urban air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFSktLo%3D&md5=cab70b8dfaa849c1727881c67db78e0aCAS |
[32] K. C. Barsanti, P. H. McMurry, J. N. Smith, The potential contribution of organic salts to new particle growth. Atmos. Chem. Phys. 2009, 9, 2949.
| The potential contribution of organic salts to new particle growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFKku70%3D&md5=e94d2d83641ea5c2e61951039b1e3cbcCAS |
[33] J. A. Lloyd, K. J. Heaton, M. V. Johnston, Reactive uptake of trimethylamine into ammonium nitrate particles. J. Phys. Chem. A 2009, 113, 4840.
| Reactive uptake of trimethylamine into ammonium nitrate particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKlur8%3D&md5=e99f82ca303085988da3d2aaa3c98628CAS |
[34] B. R. Bzdek, D. P. Ridge, M. V. Johnston, Size-dependent reactions of ammonium bisulfate clusters with dimethylamine. J. Phys. Chem. A 2010, 114, 11 638.
| Size-dependent reactions of ammonium bisulfate clusters with dimethylamine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgsLrP&md5=803efbd6e71c6efedfa3e4d89e8f2776CAS |
[35] B. R. Bzdek, D. P. Ridge, M. V. Johnston, Amine exchange into ammonium bisulphate and ammonium nitrate nuclei. Atmos. Chem. Phys. 2010, 10, 3495.
| Amine exchange into ammonium bisulphate and ammonium nitrate nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVeit7w%3D&md5=628dbc11f21f4432ce2f27c5458f4e94CAS |
[36] T. Berndt, F. Stratmann, M. Sipilä, J. Vanhanen, T. Petäjä, J. Mikkilä, A. Grüner, G. Spindler, R. Lee Mauldin, J. Curtius, M. Kulmala, J. Heintzenberg, Laboratory study on new particle formation from the reaction OH + SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process. Atmos. Chem. Phys. 2010, 10, 7101.
| Laboratory study on new particle formation from the reaction OH + SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSkt7rK&md5=82ab441085847869330926c273460424CAS |
[37] L. Wang, V. Lal, A. F. Khalizov, R. Zhang, Heterogeneous chemistry of alkylamines with sulfuric acid: implications for atmospheric formation of alkylaminium sulphates. Environ. Sci. Technol. 2010, 44, 2461.
| Heterogeneous chemistry of alkylamines with sulfuric acid: implications for atmospheric formation of alkylaminium sulphates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisFalsbw%3D&md5=eb25da528ac6da641c5c02fe08220b23CAS |
[38] L. Wang, A. F. Khalizov, J. Khalizov, W. Xu, W. Ma, V. La, R. Zhang, Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nat. Geosci. 2010, 3, 238.
| Atmospheric nanoparticles formed from heterogeneous reactions of organics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVWru7s%3D&md5=ee03a7e071cdd37ad5be2a8aee79e467CAS |
[39] M. E. Erupe, A. A. Viggiano, S.-H. Lee, The effect of trimethylamine on atmospheric nucleation involving H2SO4. Atmos. Chem. Phys. 2011, 11, 4767.
| The effect of trimethylamine on atmospheric nucleation involving H2SO4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWlt7%2FL&md5=60b6acf23465b82646ff986f90edd8b4CAS |
[40] B. R. Bzdek, D. P. Ridge, M. V. Johnston, Amine reactivity with charged sulfuric acid clusters. Atmos. Chem. Phys. 2011, 11, 8735.
| Amine reactivity with charged sulfuric acid clusters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyju7nN&md5=44ab650c71165c950eb0d0a8d0568b30CAS |
[41] J. Zhao, J. N. Smith, F. L. Eisele, M. Chen, C. Kuang, P. H. McMurry, Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements. Atmos. Chem. Phys. 2011, 11, 10 823.
| Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOisrg%3D&md5=84e8579af733163a1a4d300f4d689a2dCAS |
[42] C. Qiu, L. Wang, V. Lal, A. F. Khalizov, R. Zhang, Heterogeneous reactions of alkylamines with ammonium sulfate and ammonium bisulfate. Environ. Sci. Technol. 2011, 45, 4748.
| Heterogeneous reactions of alkylamines with ammonium sulfate and ammonium bisulfate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFWnur4%3D&md5=96354752f151f9027ae2e4107e42eb9dCAS |
[43] R. C. Sullivan, K. A. Prather, Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation. Anal. Chem. 2005, 77, 3861.
| Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlaksLY%3D&md5=e00c689506a440bb327d5b1539097313CAS |
[44] K. A. Pratt, L. E. Hatch, K. A. Prather, Seasonal volatility dependence of ambient particle phase amines. Environ. Sci. Technol. 2009, 43, 5276.
| Seasonal volatility dependence of ambient particle phase amines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVCitr0%3D&md5=4a1ccecaaf2e523f76cc7c18dcccbef6CAS |
[45] P. J. G. Rehbein, C.-H. Jeong, M. L. McGuire, X. Yao, J. C. Corbin, G. J. Evans, Cloud and fog processing enhanced gas-to-particle partitioning of trimethylamine. Environ. Sci. Technol. 2011, 45, 4346.
| Cloud and fog processing enhanced gas-to-particle partitioning of trimethylamine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFGgurs%3D&md5=6e180e9156abcef3d5eb38ed1dae372eCAS |
[46] X. Wang, S. Gao, X. Yang, H. Chen, J. Chen, G. Zhuang, J. D. Surratt, M. N. Chan, J. H. Seinfeld, Evidence for high molecular weight nitrogen-containing organic salts in urban aerosols. Environ. Sci. Technol. 2010, 44, 4441.
| Evidence for high molecular weight nitrogen-containing organic salts in urban aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFWjurc%3D&md5=0200d2e92d5491703123aab9bfac7f59CAS |
[47] E. Gard, J. E. Mayer, B. D. Morrical, T. Dienes, D. P. Fergenson, K. A. Prather, Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS. Anal. Chem. 1997, 69, 4083.
| Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFyitLc%3D&md5=97998b1df316c31aa2c41db852bb7e0fCAS |
[48] X. Wang, Y. Zhang, H. Chen, X. Yang, J. Chen, Particle nitrate formation in a highly polluted urban area: a case study by single-particle mass spectrometry in Shanghai. Environ. Sci. Technol. 2009, 43, 3061.
| Particle nitrate formation in a highly polluted urban area: a case study by single-particle mass spectrometry in Shanghai.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVOmur8%3D&md5=a7bbde9c46f1b13e8477350fdb738c8cCAS |
[49] D. Liu, R. J. Wenzel, K. A. Prather, Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment. 1. Measurements. J. Geophys. Res. 2003, 108, 8426.
| Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment. 1. Measurements.Crossref | GoogleScholarGoogle Scholar |
[50] X. Song, P. K. Hopke, D. P. Fergenson, K. A. Prather, Classification of single particle analyzed by ATOFMS using an artificial neural network, ART-2A. Anal. Chem. 1999, 71, 860.
| Classification of single particle analyzed by ATOFMS using an artificial neural network, ART-2A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1Grsw%3D%3D&md5=75c85589418952a4c9ffdf4201c715dbCAS |
[51] P. J. Silva, D.-Y. Liu, C. A. Noble, K. A. Prather, Size and chemical characterization of individual particles resulting from biomass burning of local southern California species. Environ. Sci. Technol. 1999, 33, 3068.
| Size and chemical characterization of individual particles resulting from biomass burning of local southern California species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVCrsrY%3D&md5=3f81d9980011fbb906c551f9e1a30d0aCAS |
[52] R. Zhang, A. Khalizov, L. Wang, M. Hu, W. Xu, Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 2011, [Published online ahead of print 1 November 2011]
| Nucleation and growth of nanoparticles in the atmosphere.Crossref | GoogleScholarGoogle Scholar |
[53] X. Yao, P. J. G. Rehbein, C. J. Lee, G. J. Evans, J. Corbin, C.-H. Jeong, A study on the extent of neutralization of sulphate aerosol through laboratory and field experiments using an ATOFMS and a GPIC. Atmos. Environ. 2011, 45, 6251.
| A study on the extent of neutralization of sulphate aerosol through laboratory and field experiments using an ATOFMS and a GPIC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCgtbrK&md5=fd46b2efce52a7e2371054d2e0702287CAS |
[54] K. Huang, G. Zhuang, J. Li, Q. Wang, Y. Sun, Y. Lin, J. S. Fu, Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007. J. Geophys. Res. 2010, 115, D00K13.
| Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007.Crossref | GoogleScholarGoogle Scholar |