Seasonal variations of volatile organic compounds in the coastal Baltic Sea
Anna Orlikowska A B and Detlef E. Schulz-Bull AA Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), D-18119 Rostock, Germany.
B Corresponding author. Email: anna.orlikowska@io-warnemuende.de
Environmental Chemistry 6(6) 495-507 https://doi.org/10.1071/EN09107
Submitted: 25 August 2009 Accepted: 25 November 2009 Published: 18 December 2009
Environmental context. Volatile organic compounds (VOCs) play a significant role in the global climate and are engaged in several atmospheric reactions. Relatively large amounts of VOCs are emitted from coastal waters, which is why these zones are expected to have significant impact on the atmospheric chemistry. The abundance of a single compound depends on its source and removal processes as well as on environmental parameters. Thus, seasonal changes can greatly affect the occurrence and behaviour of these trace gases.
Abstract. In order to investigate temporal changes in combination with the influence of different environmental parameters on the concentration and the composition of volatile organic compounds (VOCs), seawater samples from the coastal Baltic Sea were weekly measured from January to November 2008. In most cases, concentrations of VOCs varied seasonally and were influenced by changes in temperature and light conditions or biological species composition. A nearly two-fold increase in the mean concentration was noticed for isoprene, iodomethane and bromoform in the season with higher water temperature. The strongest flux of dimethylsulfide to the atmosphere appeared in May and July. Its high production was related to the presence of Prymnesiophyceae. The highest concentrations of diiodomethane and chloroiodomethane were observed with the spring and autumn phytoplankton bloom; their distribution was strongly controlled by light intensity. Flux calculations showed that coastal regions can affect local atmosphere, especially during biologically active periods. The strongest emission of bromoform and iodomethane was in July and August. The data presented here highlights the need to include seasonal cycles when calculating the global budgets and modelling sea–air fluxes of trace gases.
Additional keywords: DMS, isoprene, VOCs, volatile halogenated organic compounds (VHOCs), water.
Acknowledgements
The authors thank Dr N. Wasmund (Leibniz Institute for Baltic Sea Research Warnemünde (IOW)) for providing phytoplankton data and Dr C. Zülicke (IOW) for coordination of the sampling campaign and management of the environmental parameters. The authors acknowledge the German Weather Service (DWD) and the IOW MARNET team. The authors are grateful to Martin Kunze for his assistance during sampling. The authors also thank Dirk Wodarg for technical assistance and many other contributors to the present study. This work was part of the WGL-Pakt Project FILGAS and SOPRAN, BMBF (03F0462B) Project.
[1]
T. Class ,
K. Ballschmiter ,
Chemistry of organic traces in air.
J. Atmos. Chem. 1988
, 6, 35.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[Verified 20 January 2009]
[12]
W. J. Broadgate ,
G. Malin ,
F. C. Kupper ,
A. Thompson ,
P. S. Liss ,
Isoprene and other non-methane hydrocarbons from seaweeds: a source of reactive hydrocarbons to the atmosphere.
Mar. Chem. 2004
, 88, 61.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
P. J. Milne ,
D. D. Riemer ,
R. G. Zika ,
L. E. Brand ,
Measurement of vertical distribution of isoprene in surface seawater, its chemical fate, and its emission from several phytoplankton monocultures.
Mar. Chem. 1995
, 48, 237.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[14]
A. Colomb ,
N. Yassaa ,
J. Williams ,
I. Peeken ,
K. Lochte ,
Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS).
J. Environ. Monit. 2008
, 10, 325.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
R. J. Charlson ,
J. E. Lovelock ,
M. O. Andreae ,
S. G. Warren ,
Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.
Nature 1987
, 326, 655.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[16]
W. Sunda ,
D. J. Kieber ,
R. P. Kiene ,
S. Huntsman ,
An antioxidant function for DMSP and DMS in marine algae.
Nature 2002
, 418, 317.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[17]
T. Groene ,
Biogenic production and consumption of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the marine epipelagic zone: a review.
J. Mar. Syst. 1995
, 6, 191.
| Crossref | GoogleScholarGoogle Scholar |
[18]
K. L. Van Alstyne ,
M. P. Puglisi ,
DMSP in marine macroalgae and macroinvertebrates: distribution, function, and ecological impacts.
Aquat. Sci. 2007
, 69, 394.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[19]
S. D. Archer ,
L. E. Goldson ,
M. I. Liddicoat ,
D. G. Cummings ,
P. D. Nightingale ,
Marked seasonality in the concentrations and sea-to-air flux of volatile iodocarbon compounds in the western English Channel.
J. Geophys. Res. 2007
, 112, C08009.
| Crossref | GoogleScholarGoogle Scholar |
[20]
S. Klick ,
Seasonal variations of biogenic and anthropogenic halocarbons in seawater from a coastal site.
Limnol. Oceanogr. 1992
, 37, 1579.
|
CAS |
[21]
K. Abrahamsson ,
A. Ekdahl ,
Gas chromatographic determination of halogenated organic compounds in water and sediment in the Skagerrak.
J. Chromatogr. A 1993
, 643, 239.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
C. M. Bravo-Linares ,
S. M. Mudge ,
R. H. Loyola-Sepulveda ,
Occurrence of volatile organic compounds (VOCs) in Liverpool Bay, Irish Sea.
Mar. Pollut. Bull. 2007
, 54, 1742.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[23]
R. L. J. Kwint ,
K. J. M. Kramer ,
The annual cycle of the production and fate of DMS and DMSP in a marine coastal system.
Mar. Ecol. Prog. Ser. 1996
, 134, 217.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
P. S. Liss ,
A. J. Watson ,
M. I. Liddicoat ,
G. Malin ,
P. D. Nightingale ,
S. M. Turner ,
R. C. Upstill-Goddard ,
Trace gases and air–sea exchanges.
Philos. T. Roy. Soc. A 1993
, 1669, 531.
| Crossref | GoogleScholarGoogle Scholar |
[25]
S. M. Turner ,
G. Malin ,
P. D. Nightingale ,
P. S. Liss ,
Seasonal variation of dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphere.
Mar. Chem. 1996
, 54, 245.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
C. Leck ,
U. Larsson ,
L. E. Bågander ,
S. Johansson ,
S. Hajdu ,
Dimethyl sulfide in the Baltic Sea: annual variability in relation to biological activity.
J. Geophys. Res. 1990
, 95, 3353.
| Crossref | GoogleScholarGoogle Scholar |
[27]
P. D. Nightingale ,
G. Malin ,
P. S. Liss ,
Production of chloroform and other low-molecular-weight halocarbons by some species of macroalgae.
Limnol. Oceanogr. 1995
, 40, 680.
|
CAS |
[28]
M. G. Scarratt ,
R. M. Moore ,
Production of chlorinated hydrocarbons and methyl iodide by the red microalga Porphyridium purpureum.
Limnol. Oceanogr. 1999
, 44, 703.
|
CAS |
[29]
S. L. Manley ,
J. L. de la Cuesta ,
Methyl iodide production from marine phytoplankton cultures.
Limnol. Oceanogr. 1997
, 42, 142.
|
CAS |
[30]
L. J. Carpenter ,
P. S. Liss ,
S. A. Penkett ,
Marine organohalogens in the atmosphere over the Atlantic and Southern Ocean.
J. Geophys. Res. 2003
, 108, 4256.
| Crossref | GoogleScholarGoogle Scholar |
[31]
M. Martino ,
P. S. Liss ,
J. M. C. Plane ,
Wavelength-dependence of the photolysis of diiodomethane in seawater.
Geophys. Res. Lett. 2006
, 33, L06606.
| Crossref | GoogleScholarGoogle Scholar |
[32]
L. J. Carpenter ,
D. J. Wevill ,
C. J. Palmer ,
J. Michels ,
Depth profiles of volatile iodine and bromine-containing halocarbons in coastal Antarctic waters.
Mar. Chem. 2007
, 103, 227.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[33]
C. E. Jones ,
L. J. Carpenter ,
Solar photolysis of CH2I2, CH2ICl, and CH2IBr in water, saltwater, and seawater.
Environ. Sci. Technol. 2005
, 39, 6130.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[34]
R. M. Moore ,
M. Webb ,
R. Tokarczyk ,
R. Wever ,
Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures.
J. Geophys. Res. 1996
, 101, 20899.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[35]
M. Pedersén ,
J. Collén ,
K. Abrahamsson ,
A. Ekdahl ,
Production of halocarbons from seaweeds: an oxidative stress reaction?
Sci. Mar. 1996
, 60, 257.
[36]
F. Laturnus ,
Marine macroalgae in polar regions as natural sources for volatile organohalogens.
Environ. Sci. Pollut. R. 2001
, 8, 103.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[37]
C. Schall ,
K. G. Heumann ,
G. O. Kirst ,
Biogenic volatile organoiodine and organobromine hydrocarbons in the Atlantic Ocean from 42°N to 72°S.
Fresenius J. Anal. Chem. 1997
, 359, 298.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[38]
[39]
U. Selig ,
A. Eggert ,
D. Schories ,
M. Schubert ,
C. Blumel ,
H. Schubert ,
Ecological classification of macroalgae and angiosperm communities of inner coastal waters in the southern Baltic Sea.
Ecol. Indic. 2007
, 7, 665.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[40]
A. Karlsson ,
N. Auer ,
D. Schulz-Bull ,
K. Abrahamsson ,
Cyanobacterial blooms in the Baltic – a source of halocarbons.
Mar. Chem. 2008
, 110, 129.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[41]
B. Quack ,
I. Peeken ,
G. Petrick ,
K. Nachtigall ,
Oceanic distribution and sources of bromoform and dibromomethane in the Mauritanian upwelling.
J. Geophys. Res. 2007
, 112, C10006.
| Crossref | GoogleScholarGoogle Scholar |
[42]
K. Abrahamsson ,
K.-S. Choo ,
M. Pedersén ,
G. Johansson ,
P. Snoeijs ,
Effects of temperature on the production of hydrogen peroxide and volatile halocarbons by brackish-water algae.
Phytochemistry 2003
, 64, 725.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[43]
S. L. Shaw ,
S. W. Chisholm ,
R. G. Prinn ,
Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton.
Mar. Chem. 2003
, 80, 227.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[44]
R. L. J. Kwint ,
K. J. M. Kramer ,
Dimethylsulphide production by plankton communities.
Mar. Ecol. Prog. Ser. 1995
, 121, 227.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[45]
J. Dewulf ,
H. van Langenhove ,
Anthropogenic volatile organic compounds in ambient air and natural waters: a review on recent developments of analytical methodology, performance and interpretation of field measurements.
J. Chromatogr. A 1999
, 843, 163.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[46]
Ż. Polkowska ,
Determination of volatile organohalogen compounds in urban precipitation in tricity area (Gdańsk, Gdynia, Sopot).
Chemosphere 2004
, 57, 1265.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[47]
H. Hellén ,
H. Hakola ,
L. Pirjola ,
T. Laurila ,
K. H. Pystynen ,
Ambient air concentrations, source profiles, and source apportionment of 71 different C2–C10 volatile organic compounds in urban and residential areas of Finland.
Environ. Sci. Technol. 2006
, 40, 103.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[48]
A. Pozzer ,
P. Jöckel ,
R. Sander ,
J. Williams ,
L. Ganzeveld ,
J. Lelieveld ,
Technical Note: The MESSy-submodel AIRSEA calculating the air–sea exchange of chemical species.
Atmos. Chem. Phys. 2006
, 6, 5435.
|
CAS |
[49]
R. Wanninkhof ,
Relationship between wind speed and gas exchange over the ocean.
J. Geophys. Res. 1992
, 97, 7373.
| Crossref | GoogleScholarGoogle Scholar |
[50]
R. A. Duce ,
P. S. Liss ,
J. T. Merrill ,
E. L. Atlas ,
P. Buat-Menard ,
B. B. Hicks ,
M. J. Miller ,
J. M. Prospero ,
R. Arimoto ,
T. M. Church ,
W. Ellis ,
J. N. Galloway ,
et al. The atmospheric input of trace species to the world ocean.
Global Biogeochem. Cy. 1991
, 5, 193.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[51]
H. Yamamoto ,
Y. Yokouchi ,
A. Otsuki ,
I. Hiroyasu ,
Depth profiles of volatile halogenated hydrocarbons in seawater in the Bay of Bengal.
Chemosphere 2001
, 45, 371.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[52]
N. R. Auer ,
B. U. Manzke ,
D. E. Schulz-Bull ,
Development of a purge and trap continuous flow system for the stable carbon isotope analysis of volatile halogenated organic compounds in water.
J. Chromatogr. A 2006
, 1131, 24.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[53]
[54]
C. Lorenzen ,
Determination of chlorophyll and pheo-pigments: spectrophotometic equations.
Limnol. Oceanogr. 1967
, 12, 343.
|
CAS |
[55]