Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Postfrontal nanoparticles at Cape Grim: observations

John L. Gras A E , Salah I. Jimi B C , Steven T. Siems C D and Paul B. Krummel A
+ Author Affiliations
- Author Affiliations

A Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, 107–121 Station St., Aspendale, Vic. 3195, Australia.

B School of Geography and Environmental Science, Monash University, Clayton, Vic. 3800, Australia.

C Climate Theme Monash Sustainability Institute, Monash University, Clayton, Vic. 3800, Australia.

D School of Mathematical Sciences, Monash University, Clayton, Vic. 3800, Australia.

E Corresponding author. Email: john.gras@csiro.au

Environmental Chemistry 6(6) 508-514 https://doi.org/10.1071/EN09075
Submitted: 22 June 2009  Accepted: 28 October 2009   Published: 18 December 2009

Environmental context. Clouds and the factors controlling cloud properties are essential components in understanding and accurately predicting global climate change. This work examines nanometre-sized atmospheric particles, particularly bursts of enhanced particle concentrations following cold fronts over the Southern Ocean. The properties of these events have been established to enable modelling of their significance as a source of cloud-droplet-forming nuclei.

Abstract. Nanoparticles (diameter <10 nm) were studied in clean maritime air at Cape Grim over a 2-year period. Concentrations were determined using a condensation nucleus counter (CNC) and an ultra-CNC (UCNC), requiring careful treatment of drifts in counter efficiency. This is the first extended examination of nanoparticles following cold fronts and shows that nanoparticle enhancements were present following 94% of 121 cold fronts studied. Typical enhancements were ~100 cm–3 with maxima ~300–500 cm–3, occur 9–11 h after the front and contain multiple peaks with peak-to-peak separation of 8–11 h. Most enhancements were associated with drier conditions, indicative of increased entrainment of free-tropospheric air after the front. The quasi-periodicity of the enhancements may be related to mesoscale structures in cloud fields following fronts but this requires testing. This quantification of event properties allows evaluation of the significance of these events for the cloud nucleating particle (CCN) population.

Additional keywords: CCN, marine aerosol, nucleation.


Acknowledgements

We acknowledge the effort of the staff at the Cape Grim Baseline Air Pollution Station in running and maintaining all instruments in the Particle Program, and also acknowledge funding for this work from the Australian Bureau of Meteorology and CSIRO.


References


[1]   A. W. Hogan , S. Barnard , Seasonal and frontal variation in Antarctic aerosol concentrations. J. Appl. Meteorol. 1978 , 17,  1458.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   T. Ito , Study of background aerosols in the Antarctic troposphere. J. Atmos. Chem. 1985 , 3,  69.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   D. S. Covert , V. N. Kapustin , P. K. Quinn , T. S. Bates , New particle formation in the marine boundary layer. J. Geophys. Res. 1992 , 97,  20,581.
         open url image1

[4]   D. S. Covert , V. N. Kapustin , T. S. Bates , P. K. Quinn , Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport. J. Geophys. Res. 1996 , 101,  6919.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   T. S. Bates , V. N. Kapustin , P. K. Quinn , D. S. Covert , D. J. Coffman , C. Mari , P. A. Durkee , W. J. De Bruyn , E. S. Saltzman , Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterisation Experiment (ACE 1). J. Geophys. Res. 1998 , 103,  16,369.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[6]   E. K. Bigg , J. L. Gras , C. Evans , Origin of Aitken particles in remote regions of the southern hemisphere. J. Atmos. Chem. 1984 , 1,  203.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   A. D. Clarke , Atmospheric nuclei in the pacific mid troposphere: their nature, concentration, and evolution. J. Geophys. Res. 1993 , 98,  20,633.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   F. Raes , Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer. J. Geophys. Res. 1995 , 100,  2893.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[9]   F. Raes , R. Van Dingenen , E. Vignati , J. Wilson , J.-P. Putard , J. H. Seinfeld , P. Adams , Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 2000 , 34,  4215.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[10]   R. Van Dingenen , F. Raes , J.-P. Putard , A. Virkkula , M. Mangoni , Processes determining the relationship between aerosol number and non-sea-salt sulfate mass concentrations in the clean and perturbed marine boundary layer. J. Geophys. Res. 1999 , 104,  8027.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[11]   R. Van Dingenen , A. Virkkula , F. Raes , T. Bates , A. Wiedensohler , A simple non-linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer. Tellus B 2000 , 52,  439.
        | Crossref |  open url image1

[12]   K. P. Capaldo , P. Kasibhatla , S. N. Pandis , Is aerosol production within the remote marine boundary layer sufficient to maintain observed concentrations? J. Geophys. Res. 1999 , 104,  3483.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[13]   Aitken J., On some nuclei of cloudy condensation, in Collected Scientific Papers of John Aitken (Ed. C. G. Knott) 1923, pp. 495–511 (Cambridge University Press: Cambridge, UK). [Reprinted from Proc. Roy. Soc. Edinburgh, 1911, XXXI]

[14]   J. L. Gras , Condensation nucleus size distribution at Mawson Antarctica: seasonal cycle. Atmos. Environ. 1993 , 27,  1417.
         open url image1

[15]   C. D. O’Dowd , M. Geever , M. K. Hill , M. H. Smith , S. G. Jennings , New particle formation: nucleation rates and spatial scales in the clean marine coastal environment. Geophys. Res. Lett. 1998 , 25,  1661.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[16]   C. D. O’Dowd , K. Hameri , J. Makela , M. Vakeva , P. Aalto , G. de Leeuw , G. J. Kunz , E. Becker , et al. Coastal new particle formation: environmental conditions and aerosol physicochemical characteristics during nucleation bursts. J. Geophys. Res. 2002 , 107,  8107.
        | Crossref |  open url image1

[17]   C. D. O’Dowd , K. Hameri , J. M. Makela , L. Pirjola , M. Kulmala , S. G. Jennings , H. Berresheim , H. C. Hansson , et al. A dedicated study of new particle formation and fate in the coastal environment (PARFORCE): overview of objectives and achievements. J. Geophys. Res. 2002 , 107,  8108.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   J. L. Gras , Postfrontal nanoparticles at Cape Grim: impact on cloud nuclei concentrations. Environ. Chem. 2009 , 6,  515.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   A. Wiedensohler , D. Orsini , D. S. Covert , D. Coffmann , W. Cantrell , M. Havlicek , F. J. Brechtel , L. M. Russell , et al. Intercomparison study of size-dependent counting efficiency of 26 condensation particle counters. Aerosol Sci. Technol. 1997 , 27,  224.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   A. Wiedensohler , F. Brechtel , D. S. Covert , R. Wernicke , F. Stratmann , W. Birmili , S. Kreidenweis , Representative aerosol size distributions for different synoptic weather situations over the Tasman Sea. J. Aerosol Sci. 1997 , 28,  S37.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   S. I. Jimi , S. T. Siems , J. L. McGreggor , J. L. Gras , J. J. Katzfey , An investigation into the origin of aerosol nucleation events observed in the Southern Ocean boundary layer. Aust. Meteorol. Mag. 2008 , 57,  85.
         open url image1

[22]   G. P. Ayers , J. L. Gras , Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature 1991 , 353,  834.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[23]   G. P. Ayers , R. W. Gillett , DMS and its oxidation products in the remote marine atmosphere: implications for climate and atmospheric chemistry. J. Sea Res. 2000 , 43,  275.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   C. D. O’Dowd , K. Hämeri , J. Mäkelä , M. Väkeva , P. Aalto , G. de Leeuw , G. J. Kunz , E. Becker , et al. Coastal new particle formation: environmental conditions and aerosol physicochemical characteristics during nucleation bursts. J. Geophys. Res. 2002 , 107,  8107.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   C. D. O’Dowd , T. Hoffmann , Coastal new particle formation: a review of current state-of-the-art. Environ. Chem. 2005 , 2,  245.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   C. D. O’Dowd , Y. J. Yoon , W. Junkermann , P. Aalto , M. Kulmala , H. Lihavainen , Y. Viisanen , Airborne measurements of nucleation mode particles II: boreal forest nucleation events. Atmos. Chem. Phys. 2009 , 9,  937.
        |  CAS |  open url image1

[27]   L. F. Bosart , F. Sanders , Mesoscale structure in the Megalopolitan Snowstorm of 11–12 February 1983. Part III: A large-amplitude gravity wave. J. Atmos. Sci. 1986 , 43,  924.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   S. D. Eckermann , R. A. Vincent , VHF radar observations of gravity wave production by cold fronts over southern Australia. J. Atmos. Sci. 1993 , 50,  785.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   E. K. Bigg , A mechanism for the formation of new particles in the atmosphere. Atmos. Res. 1997 , 43,  129.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1