Impact of pH on CdII partitioning between alginate gel and aqueous media
Erwin J. J. Kalis A , Thomas A. Davis B , Raewyn M. Town C D and Herman P. van Leeuwen AA Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, the Netherlands.
B Department of Chemistry, University of Montreal, Succursale Centre-Ville, Montreal, QC, H3C 3J7, Canada.
C Institute for Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
D Corresponding author. Email: rmt@ifk.sdu.dk
Environmental Chemistry 6(4) 305-310 https://doi.org/10.1071/EN09060
Submitted: 17 May 2009 Accepted: 1 July 2009 Published: 25 August 2009
Environmental context. Biogels, such as those in cell walls or biofilm matrices, generally comprise negative structural charge which leads to accumulation of positively charged species, e.g. metal ions. The magnitude of the effective charge, and hence the local chemical speciation within the gel phase, is pH dependent. In situ speciation measurements in biogels, such as the model alginate studied in this work, offer a better estimate of bioavailable concentrations than does analysis of the surrounding aqueous medium.
Abstract. Many microorganisms exist in a biogel-mediated micro-environment such as a cell wall or a biofilm, in which local concentrations of ionic nutrients and pollutants differ from those in the surrounding bulk medium. The local concentration is the relevant parameter for considerations of bioavailability. These modified concentrations arise as a consequence of the negative charges within biogels which may induce a Donnan potential inside the biogel phase. For metals, the net effect on the speciation within the biogel, relative to the bulk medium, is an enhancement of the concentration of free cations. Since the structural charge in the biogel arises from protolytic functional groups, the Donnan potential is pH dependent. Here we apply in situ voltammetry to measure the free metal ion concentration inside alginate gel as a function of pH. In the pH range 3 to 7, the speciation of CdII within this model biogel can be explained by specific binding to carboxylic functional groups and electrostatic binding resulting from the Donnan potential.
Acknowledgements
This study was performed within the framework of the ECODIS project funded by the European Commission’s sixth framework program, subpriority 6.3 ‘Global change and Ecosystems’, under contract 518043. Dr J. P. Pinheiro is gratefully acknowledged for his contribution to the early development of voltammetric measurements in gel phases along with Profs. Bjørn Sundby, George W. Luther III and Dr Cédric Magen. We also gratefully acknowledge early discussions on the topic of alginate gels with Dr Synnøve Holtan, Dr Kurt I. Draget and Prof. Olav Smidsrød, Department of Biotechnology, NTNU, Trondheim, Norway.
Figures showing: (i) information obtained from the diffusion-limited steady-state Cd voltammograms for an alginate gel-solution system in Donnan equilibrium; (ii) bound Ca content and bound protons of alginate gel as a function of pH; (iii) Ca content of alginate gel before and after acidification; and (iv) relative alginate gel density as a function of pH are given. This information is available free of charge on the journal website at http://www.publish.csiro.au/?act=view_file&file_id=EN09009_AC.pdf.
[1]
T. A. Davis ,
B. Volesky ,
A. Mucci ,
A review of the biochemistry of heavy metal biosorption by brown algae.
Water Res. 2003
, 37, 4311.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[2]
J. B. Fein ,
C. J. Daughney ,
N. Yee ,
T. A. Davis ,
A chemical equilibrium model for metal adsorption onto bacterial surfaces.
Geochim. Cosmochim. Acta 1997
, 61, 3319.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[3]
N. Yee ,
D. A. Fowle ,
F. G. Ferris ,
A Donnan potential model for metal sorption onto Bacillus subtilis.
Geochim. Cosmochim. Acta 2004
, 68, 3657.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[4]
J. P. Chen ,
L. Hong ,
S. Wu ,
L. Wang ,
Elucidation of interactions between metal ions and Ca-alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation.
Langmuir 2002
, 18, 9413.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[5]
L. K. Jang ,
D. Nguyen ,
G. G. Geesey ,
An equilibrium model for adsorption of multiple divalent metals by alginate gels under acidic conditions.
Water Res. 1999
, 33, 2826.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[6]
C. Lamelas ,
F. Avaltroni ,
M. Benedetti ,
K. J. Wilkinson ,
V. I. Slaveykova ,
Quantifying Pb and Cd complexation by alginates and the role of metal binding on macromolecular aggregation.
Biomacromolecules 2005
, 6, 2756.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[7]
M. Y. Arica ,
Ç. Arpa ,
A. Ergene ,
G. Bayramoğlu ,
Ö. Genç ,
Ca-alginate as a support for Pb(II) and Zn(II) biosorption with immobilized Phanerochaete chrysosporium.
Carbohydr. Polym. 2003
, 52, 167.
| Crossref | GoogleScholarGoogle Scholar |
[8]
G. Bayramoğlu ,
I. Tuzun ,
G. Celik ,
M. Yilmaz ,
M. Y. Arica ,
Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous medium by microalgae Chlamydomonas reinhardtii immobilized in alginate beads.
Int. J. Miner. Process. 2006
, 81, 35.
| Crossref | GoogleScholarGoogle Scholar |
[9]
S. Paul ,
D. Bera ,
P. Chattopadhyay ,
L. Ray ,
Biosorption of Pb(II) by Bacillus cereus M161 immobilized in calcium alginate.
J. Hazard. Subst. Res. 2006
, 5, 2-1.
[10]
S. K. Papageorgiou ,
F. K. Katsaros ,
E. P. Kouvelos ,
J. W. Nolan ,
H. Le Deit ,
N. K. Kanellopoulos ,
Heavy metal sorption by calcium alginate beads from Laminaria digitata.
J. Hazard. Mater. B 2006
, 137, 1765.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[11]
O. Smidsrød ,
K. I. Draget ,
Chemistry and physical properties of alginates.
Carbohyd. Eur. 1996
, 14, 6.
[12]
H. Ohshima ,
T. Kondo ,
Relationship among the surface potential, Donnan potential and charge density of ion-penetrable membranes.
Biophys. Chem. 1990
, 38, 117.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[13]
E. J. J. Kalis ,
T. A. Davis ,
R. M. Town ,
H. P. van Leeuwen ,
Impact of ionic strength on CdII partitioning between alginate gel and aqueous media.
Environ. Sci. Technol. 2009
, 43, 1091.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[14]
T. A. Davis ,
E. J. J. Kalis ,
J. P. Pinheiro ,
R. M. Town ,
H. P. van Leeuwen ,
CdII speciation in alginate gels.
Environ. Sci. Technol. 2008
, 42, 7242.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
S. S. Dukhin ,
R. Zimmermann ,
C. Werner ,
Intrinsic charge and Donnan potentials of grafted polyelectrolyte layers determined by surface conductivity data.
J. Colloid Interface Sci. 2004
, 274, 309.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
Y. Jodra ,
F. Mijangos ,
Cooperative biosorption of copper on calcium alginate enclosing iminodiacetic type resin.
Environ. Sci. Technol. 2003
, 37, 4362.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[17]
T. A. Davis ,
L. P. Yezek ,
J. P. Pinheiro ,
H. P. van Leeuwen ,
Measurement of Donnan potentials in gels by in situ microelectrode voltammetry.
J. Electroanal. Chem. 2005
, 584, 100.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[18]
R. Lagoa ,
J. R. Rodrigues ,
Evaluation of dry protonated calcium alginate beads for biosorption applications and studies of lead uptake.
Appl. Biochem. Biotechnol. 2007
, 143, 115.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[19]
J. P. Chen ,
L. Wang ,
Characterization of a Ca-alginate based ion-exchange resin and its applications in lead, copper, and zinc removal.
Sep. Sci. Technol. 2001
, 36, 3617.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[20]
K. I. Draget ,
G. Skjåk Bræk ,
O. Smidsrød ,
Alginic acid gels: the effect of alginate chemical composition and molecular weight.
Carbohydr. Polym. 1994
, 25, 31.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
J. P. Ibáñez ,
Y. Umetsu ,
Potential of protonated alginate beads for heavy metals uptake.
Hydrometallurgy 2002
, 64, 89.
| Crossref | GoogleScholarGoogle Scholar |
[22]
F. Veglio ,
A. Esposito ,
A. P. Reverberi ,
Copper adsorption on calcium alginate beads: equilibrium pH-related models.
Hydrometallurgy 2002
, 65, 43.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
L. K. Jang ,
D. Nguyen ,
G. G. Geesey ,
An equilibrium model for absorption of multiple divalent metals by alginate gel under acidic conditions.
Water Res. 1999
, 33, 2826.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
P. Lodeiro ,
C. Rey-Castro ,
J. L. Barriada ,
M. E. Sastre de Vicente ,
R. Herrero ,
Biosorption of cadmium by the protonated macroalga Sargassum muticum: binding analysis with a nonideal, competitive, and thermodynamically consistent adsorption (NICCA) model.
J. Coll. Interf. Sci. 2005
, 289, 352.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
L. K. Jang ,
D. Nguyen ,
G. G. Geesey ,
Effect of pH on the absorption of Cu(II) by alginate gel.
Water Res. 1995
, 29, 315.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
L. K. Jang ,
D. Nguyen ,
G. G. Geesey ,
Selectivity of alginate gel for Cu over Zn when acidic conditions prevail.
Water Res. 1999
, 33, 2817.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[27]
T. A. Davis ,
J. P. Pinheiro ,
H. Grasdalen ,
O. Smidsrød ,
H. P. van Leeuwen ,
Stability of lead(II) complexes of alginate oligomers.
Environ. Sci. Technol. 2008
, 42, 1673.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[28]
L. P. Yezek ,
H. P. van Leeuwen ,
Donnan effects in the steady-state diffusion of metal ions through charged thin films.
Langmuir 2005
, 21, 10342.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[29]
P. L. Brown ,
S. J. Markich ,
Evaluation of the free ion activity model of metal-organism interaction: extension of the conceptual model.
Aquat. Toxicol. 2000
, 51, 177.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[30]
S. Niyogi ,
C. M. Wood ,
Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals.
Environ. Sci. Technol. 2004
, 38, 6177.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[31]
E. Pehlivan ,
B. H. Yanik ,
G. Ahmetli ,
M. Pehlivan ,
Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp.
Bioresour. Technol. 2008
, 99, 3520.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[32]
S. Qaiser ,
A. R. Saleemi ,
M. M. Ahmad ,
Heavy metal uptake by agro based waste materials.
Electron. J. Biotechnol. 2007
, 10, 409.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[33]
A. Esmaeili ,
S. Ghasemi ,
A. Rustaiyanm ,
Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu(II) from aqueous solutions.
Afr. J. Biotechnol. 2008
, 7, 2034.
|
CAS |
[34]
A. Hammaini ,
F. González ,
A. Ballester ,
M. L. Blázquez ,
J. A. Muñoz ,
Biosorption of heavy metals by activated sludge and their desorption characteristics.
J. Environ. Manage. 2007
, 84, 419.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[35]
K. I. Draget ,
K. Østgaard ,
O. Smidsrød ,
Homogeneous alginate gels: a technical approach.
Carbohydr. Polym. 1991
, 14, 159.
[36]
T. A. Davis ,
F. Llanes ,
B. Volesky ,
A. Mucci ,
Metal selectivity of Sargassum spp. and their alginates in relation to their α-L-guluronic acid content and conformation.
Environ. Sci. Technol. 2003
, 37, 261.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
Accessory publication