Insect excretes unusual six-coordinate pentavalent arsenic species
Ruwandi Andrahennadi A , Juxia Fu A , M. Jake Pushie A , Cheryl I. E. Wiramanaden A , Graham N. George A and Ingrid J. Pickering A BA Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK, S7N 5E2, Canada.
B Corresponding author. Email: ingrid.pickering@usask.ca
Environmental Chemistry 6(4) 298-304 https://doi.org/10.1071/EN09029
Submitted: 6 March 2009 Accepted: 12 June 2009 Published: 25 August 2009
Environmental context. Arsenate, in which oxidised arsenic is coordinated to four oxygen atoms, is common in the environment. We have found that a moth larva excretes an unusual form of oxidised arsenic which is bound to six oxygen atoms. Since the chemical groups which give rise to this species are abundant in environmental and biological systems, more research is needed into the possible presence of such six-coordinate complexes in natural systems.
Abstract. Arsenate, in which pentavalent arsenic (AsV) is approximately tetrahedrally coordinated by oxygen, is common in biological or environmental systems. Octahedral coordination of AsV by oxygen is known chemically but hitherto has not been observed in natural systems. In an effort to understand the effect of elevated levels of arsenic on insects and other insectivorous animals in the food chain, larvae of the moth bertha armyworm (Mamestra configurata Walker) [Lepidoptera : Noctuidae] were examined under laboratory conditions. Synchrotron X-ray absorption spectroscopy was used to show that the exuvia (shed skin) and frass (fecal matter) contain an unusual AsV species six-coordinated by oxygen. The species is modelled as a low pH octahedral chelation complex with vicinal dihydroxyls such as glycerol or catechol. Structural characterisation using extended X-ray absorption fine structure (EXAFS) shows interatomic distances which are more similar to those of the glycerol complex and the near-edge also shows more similarity with the aliphatic chelator. The larvae may be using the six-coordinate AsV species as a specific excretory molecule. Since vicinal dihydroxyl species are common, more research is needed into the possible presence of such six-coordinate complexes in natural systems.
Acknowledgements
This research is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (to I. J. Pickering), the Canadian Institutes of Health Research (CIHR) and the Saskatchewan Health Research Foundation. I. J. Pickering and G. N. George are Canada Research Chairs. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program. Part of this research was performed at the Canadian Light Source (CLS) which is supported by NSERC, the National Research Council (Canada), CIHR, and the University of Saskatchewan. We thank Agriculture and Agri-Food Canada (Saskatoon Research Centre) for insects and rearing facilities, Marlynn Mierau of the Department of Biology, University of Saskatchewan for bertha armyworm photography, Pickering and George group members for assistance with data collection and staff members at SSRL and CLS for their support.
[1]
P. Bhattacharya ,
A. H. Welch ,
K. G. Stollenwerk ,
M. J. McLaughlin ,
J. Bundschuh ,
G. Panaullah ,
Arsenic in the environment: biology and chemistry.
Sci. Total Environ. 2007
, 379, 109.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[2]
K. G. Stollenwerk ,
G. N. Breit ,
A. H. Welch ,
J. C. Yount ,
J. W. Whitney ,
A. L. Foster ,
M. N. Uddin ,
R. K. Majumder ,
et al. Arsenic attenuation by oxidized aquifer sediments in Bangladesh.
Sci. Total Environ. 2007
, 379, 133.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[3]
R. Kr. Dhar ,
B. Kr. Biswas ,
G. Samanta ,
B. Kr. Mandal ,
D. Chakraborty ,
S. Roy ,
A. Jafar ,
et al. Groundwater arsenic calamity in Bangladesh.
Curr. Sci. 1997
, 73, 48.
|
CAS |
[4]
K. A. Francesconi ,
J. S. Edmonds ,
Arsenic in the sea.
Oceanogr. Mar. Biol. Ann. Rev. 1993
, 31, 111.
[5]
[6]
M. G. Ord ,
L. A. Stocken ,
A contribution to chemical defence in World War II.
Trends Biochem. Sci. 2000
, 25, 253.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[7]
R. Andrahennadi ,
I. J. Pickering ,
Arsenic accumulation, biotransformation and localization in bertha armyworm moths.
Environ. Chem. 2008
, 5, 413.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[8]
W. J. Turnock ,
Developmental, survival and reproductive parameters of bertha armyworm, Mamestra configurata (Lepidoptera : Noctuidae) on four plant species.
Can. Entomol. 1985
, 117, 1267.
[9]
G. E. Bucher ,
G. K. Bracken ,
The bertha armyworm, Mamestra configurata (Lepidoptera : Noctuidae). Artificial diet and rearing technique.
Can. Entomol. 1976
, 108, 1327.
[10]
S. P. Cramer ,
O. Tench ,
M. Yocum ,
G. N. George ,
A 13-element Ge detector for fluorescence EXAFS.
Nucl. Instrum. Methods Phys. Res. A 1988
, 266, 586.
| Crossref | GoogleScholarGoogle Scholar |
[11]
G. N. George ,
R. C. Prince ,
S. P. Singh ,
I. J. Pickering ,
Arsenic K-edge X-ray absorption spectroscopy of arsenic in seafood.
Mol. Nutr. Food Res. 2009
, 53, 552.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
J. J. Rehr ,
M. de Leon ,
S. I. Zabinsky ,
R. C. Albers ,
Theoretical x-ray absorption fine structure standards.
J. Am. Chem. Soc. 1991
, 113, 5135.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
J. P. Perdew ,
Y. Wang ,
Accurate and simple analytic representation of the electron-gas correlation energy.
Phys. Rev. B 1992
, 45, 13244.
| Crossref | GoogleScholarGoogle Scholar |
[14]
A. Klamt ,
G. J. Schüürmann ,
COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient.
J. Chem. Soc., Perkin Trans. 2 1993
, 799.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
[16]
L. Triguero ,
L. G. M. Pettersson ,
Calculations of near-edge X-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory.
Phys. Rev. B 1998
, 58, 8097.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[17]
I. J. Pickering ,
R. C. Prince ,
M. J. George ,
R. D. Smith ,
G. N. George ,
D. E. Salt ,
Reduction and coordination of arsenic in Indian mustard.
Plant Physiol. 2000
, 122, 1171.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[18]
G. N. George ,
I. J. Pickering ,
C. J. Doonan ,
M. Korbas ,
S. P. Singh ,
R. Hoffmeyer ,
Inorganic molecular toxicology and chelation therapy of heavy metals and metalloids.
Adv. Mol. Toxicol. 2008
, 2, 123.
| Crossref | GoogleScholarGoogle Scholar |
[19]
F. H. Allen ,
O. Kennard ,
The Cambridge database of molecular structures.
Perspect. Comput. 1983
, 3, 28.
[20]
A. Kobayashi ,
T. Ito ,
F. Marumo ,
Y. Saito ,
The crystal structure of potassium (–)589-tris(1,2-benzenediolato)arsenate(V) sesquihydrate, (–)589-K[As(cat)3]·1.5H2O.
Acta Crystallogr. B 1972
, 28, 3446.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
B. A. Borgias ,
G. G. Hardin ,
K. N. Raymond ,
Characterization and structure of [H7O3]+[As(catecholate)3]-·p-dioxane.
Inorg. Chem. 1986
, 25, 1057.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
N. C. Habermehl ,
P. M. Angus ,
N. L. Kilah ,
L. Noren ,
A. D. Rae ,
A. C. Willis ,
S. B. Wild ,
Asymmetric transformation of a double-stranded, dicopper(I) helicate containing achiral bis(bidentate) Schiff bases.
Inorg. Chem. 2006
, 45, 1445.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[23]
C. A. Poutasse ,
R. O. Day ,
J. M. Holmes ,
R. R. Holmes ,
Synthesis and molecular structures of spirocyclic arsoranes containing bulky substituents.
Organometallics 1985
, 4, 708.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
H. Goldwhite ,
R. G. Teller ,
Structures of two spiroarsoranes and their dynamic implications.
J. Am. Chem. Soc. 1978
, 100, 5357.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
K. Schwendtner ,
U. Kolitsch ,
Octahedral As in M+ arsenates – architecture and seven new members.
Acta Crystallogr. B 2007
, 63, 205.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[26]
D. Blum ,
A. Durif ,
J. C. Guitel ,
Un arséniate acide de baryum BaH6As4O14. Un nouveau type d’anion cyclique: As4O14.
Acta Crystallogr. B 1977
, 33, 3222.
| Crossref | GoogleScholarGoogle Scholar |
[27]
A. M. Nakua ,
J. E. Greedan ,
Structural and magnetic properties of transition metal arsenates, AAs2O6, A = Mn, Co, and Ni.
J. Solid State Chem. 1995
, 118, 402.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[28]
J. Mason (Banus) ,
S. F. Mason ,
The electronic absorption and circular dichroism spectra, and the absolute stereochemiestry of the tris-catechyl-arsenate(V) ion.
Tetrahedron 1967
, 23, 1919.
| Crossref | GoogleScholarGoogle Scholar |
[29]
G. E. Ryschkewitsch ,
J. M. Garrett ,
Synthesis of asymmetric boron cations and resolution with As(C6H4O2)3- anion.
J. Am. Chem. Soc. 1968
, 90, 7234.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[30]
T. Mallon ,
M. Z. Wieber ,
Salts of tris[1,2-ethanediolato(2-)]- and tris[2,3-butanediolato(2-)]arsenic acid.
Z. Anorg. Allg. Chem. 1979
, 455, 13.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[31]
[32]
B. J. Mcafee ,
W. D. Gould ,
J. C. Nadeau ,
A. C. A. Da Costa ,
Biosorption of metal ions using chitosan, chitin, and biomass of Rhizopus oryzae
Separation Sci. Technol. 2001
, 36, 3207.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[33]
K. J. Kramer ,
T. L. Hopkins ,
Tyrosine metabolism for insect cuticle tanning.
Arch. Insect Biochem. Physiol. 1987
, 6, 279.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[34]