Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Insect excretes unusual six-coordinate pentavalent arsenic species

Ruwandi Andrahennadi A , Juxia Fu A , M. Jake Pushie A , Cheryl I. E. Wiramanaden A , Graham N. George A and Ingrid J. Pickering A B
+ Author Affiliations
- Author Affiliations

A Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK, S7N 5E2, Canada.

B Corresponding author. Email: ingrid.pickering@usask.ca

Environmental Chemistry 6(4) 298-304 https://doi.org/10.1071/EN09029
Submitted: 6 March 2009  Accepted: 12 June 2009   Published: 25 August 2009

Environmental context. Arsenate, in which oxidised arsenic is coordinated to four oxygen atoms, is common in the environment. We have found that a moth larva excretes an unusual form of oxidised arsenic which is bound to six oxygen atoms. Since the chemical groups which give rise to this species are abundant in environmental and biological systems, more research is needed into the possible presence of such six-coordinate complexes in natural systems.

Abstract. Arsenate, in which pentavalent arsenic (AsV) is approximately tetrahedrally coordinated by oxygen, is common in biological or environmental systems. Octahedral coordination of AsV by oxygen is known chemically but hitherto has not been observed in natural systems. In an effort to understand the effect of elevated levels of arsenic on insects and other insectivorous animals in the food chain, larvae of the moth bertha armyworm (Mamestra configurata Walker) [Lepidoptera : Noctuidae] were examined under laboratory conditions. Synchrotron X-ray absorption spectroscopy was used to show that the exuvia (shed skin) and frass (fecal matter) contain an unusual AsV species six-coordinated by oxygen. The species is modelled as a low pH octahedral chelation complex with vicinal dihydroxyls such as glycerol or catechol. Structural characterisation using extended X-ray absorption fine structure (EXAFS) shows interatomic distances which are more similar to those of the glycerol complex and the near-edge also shows more similarity with the aliphatic chelator. The larvae may be using the six-coordinate AsV species as a specific excretory molecule. Since vicinal dihydroxyl species are common, more research is needed into the possible presence of such six-coordinate complexes in natural systems.


Acknowledgements

This research is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (to I. J. Pickering), the Canadian Institutes of Health Research (CIHR) and the Saskatchewan Health Research Foundation. I. J. Pickering and G. N. George are Canada Research Chairs. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program. Part of this research was performed at the Canadian Light Source (CLS) which is supported by NSERC, the National Research Council (Canada), CIHR, and the University of Saskatchewan. We thank Agriculture and Agri-Food Canada (Saskatoon Research Centre) for insects and rearing facilities, Marlynn Mierau of the Department of Biology, University of Saskatchewan for bertha armyworm photography, Pickering and George group members for assistance with data collection and staff members at SSRL and CLS for their support.


References


[1]   P. Bhattacharya , A. H. Welch , K. G. Stollenwerk , M. J. McLaughlin , J. Bundschuh , G. Panaullah , Arsenic in the environment: biology and chemistry. Sci. Total Environ. 2007 , 379,  109.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[2]   K. G. Stollenwerk , G. N. Breit , A. H. Welch , J. C. Yount , J. W. Whitney , A. L. Foster , M. N. Uddin , R. K. Majumder , et al. Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Sci. Total Environ. 2007 , 379,  133.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[3]   R. Kr. Dhar , B. Kr. Biswas , G. Samanta , B. Kr. Mandal , D. Chakraborty , S. Roy , A. Jafar , et al. Groundwater arsenic calamity in Bangladesh. Curr. Sci. 1997 , 73,  48.
        |  CAS |  open url image1

[4]   K. A. Francesconi , J. S. Edmonds , Arsenic in the sea. Oceanogr. Mar. Biol. Ann. Rev. 1993 , 31,  111.
         open url image1

[5]   Greenwood N. N., Earnshaw A., Chemistry of the Elements, 2nd edn 1990 (Pergamon Press: New York).

[6]   M. G. Ord , L. A. Stocken , A contribution to chemical defence in World War II. Trends Biochem. Sci. 2000 , 25,  253.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[7]   R. Andrahennadi , I. J. Pickering , Arsenic accumulation, biotransformation and localization in bertha armyworm moths. Environ. Chem. 2008 , 5,  413.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[8]   W. J. Turnock , Developmental, survival and reproductive parameters of bertha armyworm, Mamestra configurata (Lepidoptera : Noctuidae) on four plant species. Can. Entomol. 1985 , 117,  1267.
         open url image1

[9]   G. E. Bucher , G. K. Bracken , The bertha armyworm, Mamestra configurata (Lepidoptera : Noctuidae). Artificial diet and rearing technique. Can. Entomol. 1976 , 108,  1327.
         open url image1

[10]   S. P. Cramer , O. Tench , M. Yocum , G. N. George , A 13-element Ge detector for fluorescence EXAFS. Nucl. Instrum. Methods Phys. Res. A 1988 , 266,  586.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   G. N. George , R. C. Prince , S. P. Singh , I. J. Pickering , Arsenic K-edge X-ray absorption spectroscopy of arsenic in seafood. Mol. Nutr. Food Res. 2009 , 53,  552.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   J. J. Rehr , M. de Leon , S. I. Zabinsky , R. C. Albers , Theoretical x-ray absorption fine structure standards. J. Am. Chem. Soc. 1991 , 113,  5135.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[13]   J. P. Perdew , Y. Wang , Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992 , 45,  13244.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   A. Klamt , G. J. Schüürmann , COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2 1993 ,  799.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   Hermann K., Pettersson L. G. M., Casida M. E., Daul C., Goursot A., Koester A., Proynov E., St-Amant A., Salahub D. R., et al., StoBe Software, version 2.1 2005.

[16]   L. Triguero , L. G. M. Pettersson , Calculations of near-edge X-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory. Phys. Rev. B 1998 , 58,  8097.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[17]   I. J. Pickering , R. C. Prince , M. J. George , R. D. Smith , G. N. George , D. E. Salt , Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 2000 , 122,  1171.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[18]   G. N. George , I. J. Pickering , C. J. Doonan , M. Korbas , S. P. Singh , R. Hoffmeyer , Inorganic molecular toxicology and chelation therapy of heavy metals and metalloids. Adv. Mol. Toxicol. 2008 , 2,  123.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   F. H. Allen , O. Kennard , The Cambridge database of molecular structures. Perspect. Comput. 1983 , 3,  28.
         open url image1

[20]   A. Kobayashi , T. Ito , F. Marumo , Y. Saito , The crystal structure of potassium (–)589-tris(1,2-benzenediolato)arsenate(V) sesquihydrate, (–)589-K[As(cat)3]·1.5H2O. Acta Crystallogr. B 1972 , 28,  3446.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   B. A. Borgias , G. G. Hardin , K. N. Raymond , Characterization and structure of [H7O3]+[As(catecholate)3]-·p-dioxane. Inorg. Chem. 1986 , 25,  1057.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   N. C. Habermehl , P. M. Angus , N. L. Kilah , L. Noren , A. D. Rae , A. C. Willis , S. B. Wild , Asymmetric transformation of a double-stranded, dicopper(I) helicate containing achiral bis(bidentate) Schiff bases. Inorg. Chem. 2006 , 45,  1445.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[23]   C. A. Poutasse , R. O. Day , J. M. Holmes , R. R. Holmes , Synthesis and molecular structures of spirocyclic arsoranes containing bulky substituents. Organometallics 1985 , 4,  708.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   H. Goldwhite , R. G. Teller , Structures of two spiroarsoranes and their dynamic implications. J. Am. Chem. Soc. 1978 , 100,  5357.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[25]   K. Schwendtner , U. Kolitsch , Octahedral As in M+ arsenates – architecture and seven new members. Acta Crystallogr. B 2007 , 63,  205.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[26]   D. Blum , A. Durif , J. C. Guitel , Un arséniate acide de baryum BaH6As4O14. Un nouveau type d’anion cyclique: As4O14. Acta Crystallogr. B 1977 , 33,  3222.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   A. M. Nakua , J. E. Greedan , Structural and magnetic properties of transition metal arsenates, AAs2O6, A = Mn, Co, and Ni. J. Solid State Chem. 1995 , 118,  402.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   J. Mason (Banus) , S. F. Mason , The electronic absorption and circular dichroism spectra, and the absolute stereochemiestry of the tris-catechyl-arsenate(V) ion. Tetrahedron 1967 , 23,  1919.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   G. E. Ryschkewitsch , J. M. Garrett , Synthesis of asymmetric boron cations and resolution with As(C6H4O2)3- anion. J. Am. Chem. Soc. 1968 , 90,  7234.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[30]   T. Mallon , M. Z. Wieber , Salts of tris[1,2-ethanediolato(2-)]- and tris[2,3-butanediolato(2-)]arsenic acid. Z. Anorg. Allg. Chem. 1979 , 455,  13.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[31]   Nation J. L., Insect Physiology and Biochemistry 2002 (CRC Press: Washington, DC).

[32]   B. J. Mcafee , W. D. Gould , J. C. Nadeau , A. C. A. Da Costa , Biosorption of metal ions using chitosan, chitin, and biomass of Rhizopus oryzae Separation Sci. Technol. 2001 , 36,  3207.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[33]   K. J. Kramer , T. L. Hopkins , Tyrosine metabolism for insect cuticle tanning. Arch. Insect Biochem. Physiol. 1987 , 6,  279.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[34]   George G. N., Pickering I. J., Doonan C. J., Korbas M., Singh S. P., Hoffmeyer R., Inorganic molecular toxicology and chelation therapy of heavy metals and metalloids, in Advances in Molecular Toxicology, Volume 2 (Ed. J. C. Fishbein) 2008, pp. 125–155 (Elsevier: Amsterdam).