Carp chemical sensing and the potential of natural environmental attractants for control of carp: a review
Aaron Elkins A B , Russell Barrow B and Simone Rochfort A CA Biosciences Research Division, Department of Primary Industries, Victoria, 1 Park Drive, La Trobe University, Vic. 3083, Australia.
B Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
C Corresponding author. Email: simone.rochfort@dpi.vic.gov.au
Environmental Chemistry 6(5) 357-368 https://doi.org/10.1071/EN09032
Submitted: 10 March 2009 Accepted: 25 August 2009 Published: 22 October 2009
Environmental context. Carp are responsible for causing significant damage to lakes and rivers resulting in highly turbid water impacting native fish. At present there are no effective ways to manage the damage caused by carp or eradicate them, but the efficiency of carp removal from our waterways can be enhanced by the development of naturally occurring environmental attractants. As part of a broader pest management scheme the implementation of these attractants can significantly enhance the effectiveness of eradication programs and lead to the restoration of our waterways.
Abstract. Cyprinus carpio, a species of carp commonly known as European or common carp, are invasive alien species in Australian inland waters and have an extensive impact on biodiversity and the aquatic environment. The control and eradication of carp is a major focus of fisheries services throughout Australia, but at present there is no wholly successful way to limit the damage caused. An integrated pest management scheme (IPM) is the most likely approach to be effective. Such a scheme could employ current tactics such as trapping in combination with new strategies including attractants or deterrents. Among proposed attractants are environmentally derived chemicals. Carp have long been observed to prefer certain habitats and environmental conditions over others, although the reasons for such a preference are not well defined. This article reviews the current scientific literature for chemical reception and attraction in carp with an emphasis on environmentally derived attractants and the potential for use of these chemical cues to enhance IPM strategies with minimal environmental impact.
Additional keywords: analysis, attraction, chemical ecology, chemoreception, environment, pest management, pheromones, synthesis.
Acknowledgements
The authors acknowledge the financial support of the Invasive Animals Cooperative Research Centre (IA CRC) in formulating this review, the Victorian Department of Primary Industries for the use of their facilities and resources and the Australian National University granting a postgraduate award for the research to be conducted.
[1]
[2]
[3]
Q.-G. Liu ,
Y. Chen ,
J.-L. Li ,
L.-Q. Chen ,
The food web structure and ecosystem properties of a filter-feeding carps dominated deep reservoir ecosystem.
Ecol. Modell. 2007
, 203, 279.
| Crossref | GoogleScholarGoogle Scholar |
[4]
P. Brown ,
T. I. Walker ,
CARPSIM: stochastic simulation modelling of wild carp (Cyprinus carpio L.) population dynamics, with applications to pest control.
Ecol. Modell. 2004
, 176, 83.
| Crossref | GoogleScholarGoogle Scholar |
[5]
D. C. Hockin ,
K. O’Hara ,
J. W. Eaton ,
A radiotelemetric study of the movements of grass carp in a British canal.
Fish. Res. 1989
, 7, 73.
| Crossref | GoogleScholarGoogle Scholar |
[6]
[7]
P. W. Sorensen ,
N. E. Stacey ,
Brief review of fish pheromones and discussion of their possible uses in the control of non-indigenous teleost fishes.
N. Z. J. Mar. Freshw. Res. 2004
, 38, 399.
[8]
J. R. Pawlik ,
Chemical induction of larval settlement and metamorphosis in the reef-building tube worm Phragmatopoma californica (Sabellariidae: Polychaeta).
Mar. Biol. 1986
, 91, 59.
| Crossref | GoogleScholarGoogle Scholar |
[9]
R. A. Gleeson ,
Morphological and behavioural identification of the sensory structures mediating pheromone reception in the blue crab, Callinectes sapidus.
Biol. Bull. 1982
, 163, 162.
| Crossref | GoogleScholarGoogle Scholar |
[10]
A.-S. Krång ,
S. P. Baden ,
The ability of the amphipod Corophium volutator (Pallas) to follow chemical signals from con-specifics.
J. Exp. Mar. Biol. Ecol. 2004
, 310, 195.
| Crossref | GoogleScholarGoogle Scholar |
[11]
D. Rittschof ,
Chemical attraction of hermit crabs and other attendants to simulated gastropod predation sites.
J. Chem. Ecol. 1980
, 6, 103.
| Crossref | GoogleScholarGoogle Scholar |
[12]
M. J. Weissburg ,
R. K. Zimmer-Faust ,
Life and death in moving fluids: hydrodynamic effects on chemosensory-mediated predation.
Ecology 1993
, 74, 1428.
| Crossref | GoogleScholarGoogle Scholar |
[13]
L. M. Samuelsson ,
L. Forlin ,
G. Karlsson ,
M. Adolfsson-Erici ,
D. G. J. Larsson ,
Using NMR metabolomics to identify responses of an environmental estrogen in blood plasma of fish.
Aquat. Toxicol. 2006
, 78, 341.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[14]
M. G. Pawson ,
Analysis of a natural chemical attractant for whiting Merlangius merlangus L. and cod Gadus morhua L. using a behavioural bioassay.
Comp. Biochem. Physiol. A 1977
, 56, 129.
| Crossref | GoogleScholarGoogle Scholar |
[15]
[16]
Y. Ishida ,
H. Yoshikawa ,
H. Kobayashi ,
Electrophysiological responses of three chemosensory systems in the carp to pesticides.
Physiol. Behav. 1996
, 60, 633.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[17]
K. M. Ferrari ,
N. M. Targett ,
Chemical attractants in horseshoe crab, Limulus polyphemus, eggs: the potential for an artificial bait.
J. Chem. Ecol. 2003
, 29, 477.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[18]
K. Ide ,
K. Takahashi ,
K. Sasaki ,
M. Omori ,
Predation by scavenging amphipods to injured hatchery-raised juvenile Japanese flounder Paralichthys olivaceus under laboratory conditions.
Fish. Sci. 2006
, 72, 1209.
| Crossref | GoogleScholarGoogle Scholar |
[19]
K. Harada ,
S. Maruyama ,
K. Nakano ,
Feeding attractants in chemical constituents of brown alga for young abalone.
Nippon Suisan Gakkai Shi 1984
, 50, 1541.
[20]
K. Harada ,
H. Matsuda ,
Feeding attractants in chemical constituents from the mid-gut gland of squid for juvenile yellowtail.
Nippon Suisan Gakkai Shi 1984
, 50, 623.
[21]
K. Harada ,
I. Ikeda ,
Feeding attractants in chemical constituents of lake prawn for oriental weatherfish.
Nippon Suisan Gakkai Shi 1984
, 50, 617.
[22]
W. E. S. Carr ,
J. C. Netherton ,
R. A. Gleeson ,
C. D. Derby ,
Stimulants of feeding behavior in fish: Analyses of tissues of diverse marine organisms.
Biol. Bull. 1996
, 190, 149.
| Crossref | GoogleScholarGoogle Scholar |
[23]
P. Saglio ,
B. Fauconneau ,
J. M. Blanc ,
Orientation of carp, Cyprinus carpio L., to free amino acids from Tubifex extract in an olfactometer.
J. Fish Biol. 1990
, 37, 887.
| Crossref | GoogleScholarGoogle Scholar |
[24]
[25]
W. E. S. Carr ,
E. R. Hall ,
S. Gurin ,
Chemoreception and the role of proteins: A comparative study.
Comp. Biochem. Physiol. Part A. Physiol. 1974
, 47, 559.
| Crossref | GoogleScholarGoogle Scholar |
[26]
E. H. Hamdani ,
G. Alexander ,
K. B. Døving ,
Projection of sensory neurons with microvilli to the lateral olfactory tract indicates their participation in feeding behaviour in crucian carp.
Chem. Senses 2001
, 26, 1139.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[27]
[28]
K. B. Døving ,
R. Selset ,
G. Thommesen ,
Olfactory sensitivity to bile acids in salmonid fishes.
Acta Physiol. Scand. 1980
, 108, 123.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[29]
L. S. Demski ,
J. G. Dulka ,
Functional-anatomical studies on sperm release evoked by electrical stimulation of the olfactory tract in goldfish.
Brain Res. 1984
, 291, 241.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[30]
N. E. Stacey ,
A. L. Kyle ,
Effects of olfactory tract lesions on sexual and feeding behavior in the goldfish.
Physiol. Behav. 1983
, 30, 621.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[31]
E. H. Hamdani ,
K. B. Døving ,
Specific projection of the sensory crypt cells in the olfactory system in crucian carp, Carassius carassius.
Chem. Senses 2005
, 31, 63.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[32]
G. Thommesen ,
The spatial distribution of odour induced potentials in the olfactory bulb of char and trout (Salmonidae).
Acta Physiol. Scand. 1978
, 102, 205.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[33]
A. P. Scott ,
P. W. Sorensen ,
Time course of release of pheromonally active gonadal steroids and their conjugates by ovulatory goldfish.
Gen. Comp. Endocrinol. 1994
, 96, 309.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[34]
E.-H. Hamdani ,
O. B. Stabell ,
G. Alexander ,
K. B. Døving ,
Alarm reaction in the crucian carp is mediated by the medial bundle of the medial olfactory tract.
Chem. Senses 2000
, 25, 103.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[35]
R. M. Mesquita ,
A. V. Canario ,
E. Melo ,
Partition of fish pheromones between water and aggregates of humic acids. Consequences for sexual signaling.
Environ. Sci. Technol. 2003
, 37, 742.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[36]
K. Matsumura ,
Tetrodotoxin as a pheromone.
Nature 1995
, 378, 563.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[37]
W. Pfeiffer ,
G. Riegelbauer ,
G. Meier ,
B. Scheibler ,
Effect of hypoxanthine-3(N)-oxide and hypoxanthine-1(N)-oxide on central nervous excitation of the black tetra Gymnocorymbus ternetzi (Characidae, Ostariophysi, Pisces) indicated by dorsal light response.
J. Chem. Ecol. 1985
, 11, 507.
| Crossref | GoogleScholarGoogle Scholar |
[38]
P. W. Sorensen ,
T. J. Hara ,
N. E. Stacey ,
J. G. Dulka ,
Extreme olfactory specificity of male goldfish to the preovulatory steroidal pheromone 17α,20β-dihydroxy-4-pregnen-3-one.
J. Comp. Physiol. A 1990
, 166, 373.
| Crossref | GoogleScholarGoogle Scholar |
[39]
P. W. Sorensen ,
T. J. Hara ,
N. E. Stacey ,
F. W. Goetz ,
F prostaglandins function as potent olfactory stimulants that comprise the postovulatory female sex pheromone in goldfish.
Biol. Reprod. 1988
, 39, 1039.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[40]
C. N. Polkinghorne ,
J. M. Olson ,
D. G. Gallaher ,
P. W. Sorensen ,
Larval sea lamprey release two unique bile acids** to the water at a rate sufficient to produce detectable riverine pheromone plumes.
Fish Physiol. Biochem. 2001
, 24, 15.
| Crossref | GoogleScholarGoogle Scholar |
[41]
K. Kawabata ,
Induction of sexual behavior in male fish (Rhodeus ocellatus ocellatus) by amino acids.
Amino Acids 1993
, 5, 323.
| Crossref | GoogleScholarGoogle Scholar |
[42]
J. Krieger ,
H. Breer ,
Olfactory reception in invertebrates.
Science 1999
, 286, 720.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[43]
B. H. Sandler ,
L. Nikonova ,
W. S. Leal ,
J. Clardy ,
Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex.
Chem. Biol. 2000
, 7, 143.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[44]
A. L. Il’ichev ,
D. G. Williams ,
L. J. Gut ,
Dual pheromone dispenser for combined control of codling moth Cydia pomonella L. and oriental fruit moth Grapholita molesta (Busck) (Lep., Tortricidae) in pears.
J. Appl. Entomol. 2007
, 131, 368.
| Crossref | GoogleScholarGoogle Scholar |
[45]
P. W. Sorensen ,
L. A. Vrieze ,
The chemical ecology and potential application of the sea lamprey migratory pheromone.
J. Great Lakes Res. 2003
, 29, 66.
[46]
W. Li ,
P. W. Sorensen ,
Highly independent olfactory receptor sites for naturally occurring bile acids in the sea lamprey, Petromyzon marinus.
J. Comp. Physiol. A 1997
, 180, 429.
| Crossref | GoogleScholarGoogle Scholar |
[47]
J. Fine ,
P. Sorensen ,
Isolation and biological activity of the multi-component sea lamprey migratory pheromone.
J. Chem. Ecol. 2008
, 34, 1259.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[48]
W. Li ,
P. W. Sorensen ,
D. D. Gallaher ,
The olfactory system of migratory adult sea lamprey (Petromyzon marinus) is specifically and acutely sensitive to unique bile acids released by conspecific larvae.
J. Gen. Physiol. 1995
, 105, 569.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[49]
P. W. Sorensen ,
L. A. Vrieze ,
J. M. Fine ,
A multi-component migratory pheromone in the sea lamprey.
Fish Physiol. Biochem. 2003
, 28, 253.
| Crossref | GoogleScholarGoogle Scholar |
[50]
P. W. Sorensen ,
T. R. Hoye ,
A critical review of the discovery and application of a migratory pheromone in an invasive fish, the sea lamprey Petromyzon marinus L.
J. Fish Biol. 2007
, 71, 100.
[51]
P. W. Sorensen ,
J. M. Fine ,
V. Dvornikovs ,
C. S. Jeffrey ,
F. Shao ,
J. Wang ,
L. A. Vrieze ,
K. R. Anderson ,
T. R. Hoye ,
Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey.
Nat. Chem. Biol. 2005
, 1, 324.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[52]
T. R. Hoye ,
P. W. Sorensen ,
A critical review of the discovery and application of a migratory pheromone in an invasive fish, the sea lamprey Petromyzon marinus L.
J. Fish Biol. 2007
, 71, 100.
[53]
M. C. Wagner ,
M. L. Jones ,
M. B. Twohey ,
P. W. Sorensen ,
A field test verifies that pheromones can be useful for sea lamprey (Petromyzon marinus) control in the Great Lakes.
Can. J. Fish. Aquat. Sci. 2006
, 63, 475.
| Crossref | GoogleScholarGoogle Scholar |
[54]
J. Brechbuhl ,
M. Klaey ,
M.-C. Broillet ,
Grueneberg ganglion cells mediate alarm pheromone detection in mice.
Science 2008
, 321, 1092.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[55]
M. Hagman ,
R. Shine ,
Understanding the toad code: behavioural responses of cane toad (Chaunus marinus) larvae and metamorphs to chemical cues.
Austral Ecol. 2008
, 33, 37.
[56]
J. Rajchard ,
Antipredator pheromones in amphibians: a review.
Vet. Med. (Praha) 2006
, 51, 409.
[57]
E. G. Schwartzberg ,
G. Kunert ,
C. Stephan ,
A. David ,
U. S. R. Röse ,
J. Gershenzon ,
W. W. Weisser ,
Alarm pheromone emission by pea aphid, Acyrthosiphon pisum, clones under predation by lacewing larvae.
Entomol. Exp. Appl. 2008
, 128, 403.
| Crossref | GoogleScholarGoogle Scholar |
[58]
G. Kunert ,
S. Otto ,
U. S. R. Röse ,
J. Gershenzon ,
W. W. Weisse ,
Alarm pheromone mediates production of winged dispersal morphs in aphids.
Ecol. Lett. 2005
, 8, 596.
| Crossref | GoogleScholarGoogle Scholar |
[59]
M. Ono ,
H. Terabe ,
H. Hori ,
M. Sasaki ,
Components of giant hornet alarm pheromone.
Nature 2003
, 424, 637.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[60]
A. R. Wardle ,
J. H. Borden ,
H. D. Pierce ,
R. Gries ,
Volatile compounds released by disturbed and calm adults of the tarnished plant bug, Lygus lineolaris.
J. Chem. Ecol. 2003
, 29, 931.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[61]
G. E. Brown ,
J. C. Adrian ,
N. T. Naderi ,
M. C. Harvey ,
J. M. Kelly ,
Nitrogen oxides elicit antipredator responses in juvenile channel catfish, but not in convict cichlids or rainbow trout: conservation of the ostariophysan alarm pheromone.
J. Chem. Ecol. 2003
, 29, 1781.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[62]
S. Lastein ,
E. H. Hamdani ,
K. B. Døving ,
Single unit responses to skin odorants from conspecifics and heterospecifics in the olfactory bulb of crucian carp Carassius carassius.
J. Exp. Biol. 2008
, 211, 3529.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[63]
O. B. Stabeil ,
M. S. Lwin ,
Predator-induced phenotypic changes in crucian carp are caused by chemical signals from conspecifics.
Environ. Biol. Fishes 1997
, 49, 145.
[64]
B. D. Wisenden ,
T. A. Thiel ,
Field verification of predator attraction to minnow alarm substance.
J. Chem. Ecol. 2002
, 28, 433.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[65]
D. P. Chivers ,
G. E. Brown ,
R. J. F. Smith ,
The evolution of chemical alarm signals: Attracting predators benefits alarm signal senders.
Am. Nat. 1996
, 148, 649.
| Crossref | GoogleScholarGoogle Scholar |
[66]
S. Lastein ,
E. Höglund ,
I. Mayer ,
Ø. Øverli ,
K. B. Døving ,
Female crucian carp, Carassius carassius, lose predator avoidance behavior when getting ready to mate.
J. Chem. Ecol. 2008
, 34, 1487.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[67]
[68]
P. W. Sørensen ,
A. P. Scott ,
The evolution of hormonal sex pheromones in teleost fish: poor correlation between the pattern of steroid release by goldfish and olfactory sensitivity suggests that these cues evolved as a result of chemical spying rather than signal specialization.
Acta Physiol. Scand. 1994
, 152, 191.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[69]
[70]
P. W. Sorensen ,
T. A. Christensen ,
N. E. Stacey ,
Discrimination of pheromonal cues in fish: emerging parallels with insects.
Curr. Opin. Neurobiol. 1998
, 8, 458.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[71]
F. Yamazaki ,
The role of urine in sex discrimination in the goldfish Carassius auratus.
Bull. Fac. Fish. Hokkaido Univ. 1990
, 41, 155.
[72]
J. S. Richards ,
D. L. Russell ,
S. Ochsner ,
M. Hsieh ,
K. H. Doyle ,
A. E. Falender ,
Y. K. Lo ,
S. C. Sharma ,
Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization.
Recent Prog. Horm. Res. 2002
, 57, 195.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[73]
D. R. Kelly ,
When is a butterfly like an elephant?
Chem. Biol. 1996
, 3, 595.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[74]
K. R. Poling ,
E. J. Fraser ,
P. W. Sorensen ,
The three steroidal components of the goldfish preovulatory pheromone signal evoke different behaviors in males.
Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001
, 129, 645.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[75]
A. N. C. Morse ,
D. E. Morse ,
Recruitment and metamorphosis of Haliotis larvae induced by molecules uniquely available at the surfaces of crustose red algae.
J. Exp. Mar. Biol. Ecol. 1984
, 75, 191.
| Crossref | GoogleScholarGoogle Scholar |
[76]
R. A. Jensen ,
D. E. Morse ,
Chemically induced metamorphosis of polychaete larvae in both the laboratory and ocean environment.
J. Chem. Ecol. 1990
, 16, 911.
| Crossref | GoogleScholarGoogle Scholar |
[77]
J. Kubanek ,
M. E. Hay ,
P. J. Brown ,
N. Lindquist ,
W. Fenical ,
Lignoid chemical defenses in the freshwater macrophyte Saururus cernuus.
Chemoecology 2001
, 11, 1.
| Crossref | GoogleScholarGoogle Scholar |
[78]
S. A. Miller ,
F. D. Provenza ,
Mechanisms of resistance of freshwater macrophytes to herbivory by invasive juvenile common carp.
Freshw. Biol. 2007
, 52, 39.
| Crossref | GoogleScholarGoogle Scholar |
[79]
J. E. Murphy ,
K. B. Beckmen ,
J. K. Johnson ,
R. B. Cope ,
T. Lawmaster ,
V. R. Beasley ,
Toxic and feeding deterrent effects of native aquatic macrophytes on exotic grass carp (Ctenopharyngodon idella).
Ecotoxicology 2002
, 11, 243.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[80]
J. Parker ,
D. Collins ,
J. Kubanek ,
M. Sullards ,
D. Bostwick ,
M. Hay ,
Chemical defenses promote persistence of the aquatic plant Micranthemum umbrosum.
J. Chem. Ecol. 2006
, 32, 815.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[81]
D. M. Wilson ,
W. Fenical ,
M. Hay ,
N. Lindquist ,
R. Bolser ,
Habenariol, a freshwater feeding deterrent from the aquatic orchid Habenaria repens (Orchidaceae).
Phytochemistry 1999
, 50, 1333.
| Crossref | GoogleScholarGoogle Scholar |
[82]
[83]
C. D. Runcie ,
Behavioral evidence for multicomponent trail pheromone in the termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae).
J. Chem. Ecol. 1987
, 13, 1967.
| Crossref | GoogleScholarGoogle Scholar |
[84]
H. D. Bloom ,
A. Perlmutter ,
A sexual aggregating pheromone system in the zebrafish, Brachydanio rerio (hamilton-buchanan).
J. Exp. Zool. 1977
, 199, 215.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[85]
D. Park ,
C. R. Propper ,
Pheromones from female mosquitofish at different stages of reproduction differentially affect male sexual activity.
Copeia 2002
, 2002, 1113.
| Crossref | GoogleScholarGoogle Scholar |
[86]
K. Mopper ,
A. Stubbins ,
J. D. Ritchie ,
H. M. Bialk ,
P. G. Hatcher ,
Advanced instrumental approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy.
Chem. Rev. 2007
, 107, 419.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[87]
A. V. Jung ,
C. Frochot ,
S. Parant ,
B. S. Lartiges ,
C. Selve ,
M. L. Viriot ,
J.-L. Bersillon ,
Synthesis of amino-phenolic humic-like substances and comparison with natural aquatic humic acids: A multi-analytical techniques approach.
Org. Geochem. 2005
, 36, 1252.
| Crossref | GoogleScholarGoogle Scholar |
[88]
H. Zenkevics ,
M. Klavins ,
V. Vose ,
A. Bucena ,
Humic acid reduces gonadotropin activity and hormonal sensitivity of frog oocytes.
Aquat. Toxicol. 2005
, 75, 380.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[89]
R. Menzel ,
S. Sturzenbaum ,
A. Barenwaldt ,
J. Kulas ,
C. E. Steinberg ,
Humic material induces behavioral and global transcriptional responses in the nematode Caenorhabditis elegans.
Environ. Sci. Technol. 2005
, 39, 8324.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[90]
S. J. Cooke ,
R. S. McKinley ,
Winter residency and activity patterns of channel catfish, Ictalurus punctatus (Rafinesque), and common carp, Cyprinus carpio L., in a thermal discharge canal.
Fish. Manag. Ecol. 1999
, 6, 515.
| Crossref | GoogleScholarGoogle Scholar |
[91]
C. Tseng ,
L. Liu ,
C. Chen ,
W. Ding ,
Analysis of perfluorooctanesulfonate and related fluorochemicals in water and biological tissue samples by liquid chromatography-ion trap mass spectrometry.
J. Chromatogr. A 2006
, 1105, 119.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[92]
L. E. Hurd ,
F. R. Prete ,
T. H. Jones ,
T. B. Singh ,
J. E. Co ,
R. T. Portman ,
First identification of a putative sex pheromone in a praying mantis.
J. Chem. Ecol. 2004
, 30, 155.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[93]
M. N. Kayali-Sayadi ,
J. M. Bautista ,
L. M. Polo-Díez ,
I. Salazar ,
Identification of pheromones in mouse urine by head-space solid phase microextraction followed by gas chromatography-mass spectrometry.
J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003
, 796, 55.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[94]
A. L. Il’ichev ,
L. L. Stelinski ,
D. G. Williams ,
L. J. Gut ,
Sprayable microencapsulated sex pheromone formulation for mating disruption of oriental fruit Moth (Lepidoptera: Tortricidae) in Australian peach and pear orchards.
J. Econ. Entomol. 2006
, 99, 2048.
| PubMed |