Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Antimony uptake by different plant species from nutrient solution, agar and soil

Martin Tschan A D , Brett H. Robinson B , Matteo Nodari C and Rainer Schulin A
+ Author Affiliations
- Author Affiliations

A Eidgenössische Technische Hochschule (ETH) Zurich, Institute of Terrestrial Ecosystems ITES, Universitaetstrasse 16, CH-8092 Zurich, Switzerland.

B Agricultural and Life Sciences Division, Lincoln University, PO Box 84, Canterbury, New Zealand.

C University of Zurich, Zoologisches Institut, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.

D Corresponding author. Email: martin.tschan@env.ethz.ch

Environmental Chemistry 6(2) 144-152 https://doi.org/10.1071/EN08103
Submitted: 10 December 2008  Accepted: 30 March 2009   Published: 27 April 2009

Environmental context. Because of its many industrial and other uses, antimony (Sb) is increasingly emitted into the environment through human activities. We studied the uptake of Sb by crop plants from three different substrates: hydroponic nutrient solutions, agar medium, and potting soil. The uptake of Sb increased linearly with Sb in solution or soluble Sb in soil over a wide range of concentrations until it was limited by toxicity. Antimony was much less toxic than its sister element arsenic compared on a molar basis. The results suggest that Sb may be accumulated by some crop plants on heavily contaminated soils at concentrations that may pose a health risk to humans and animals.

Abstract. We investigated the uptake of antimonate from nutrient solutions, agar and soil by various cultivated plants, including Indian mustard (Brassica juncea (L.) Czern), sunflower (Helianthus annuus L.), perennial ryegrass (Lolium perenne L.), clover (Trifolium pratense L.), wheat (Triticum aestivum L.) and maize (Zea mays L.). Antimony uptake did not differ between the three growth media. In all tested plants, the shoot Sb concentration was proportional to Sb in solution or soluble Sb in soil, until toxicity eventually limited growth. At a given Sb concentration in the growth medium, Sb accumulation differed between plant species by up to an order of magnitude. Clover grown in agar containing 160 mg L–1 Sb in solution accumulated 2151 mg kg–1 Sb (dry weight) in the shoots. Maize had the lowest accumulation. In maize and sunflower, most Sb accumulated in the leaves. The results indicate that antimony may accumulate in the edible parts of crop plants grown on heavily contaminated soils at concentrations that may pose a health risk to humans and animals.

Additional keywords: allocation, arsenic, hydroponics, plant uptake, toxicity.


Acknowledgements

We gratefully acknowledge Anna Grünwald, René Saladin and Viktor Stadelmann for their generous help and support in the laboratory. The current project was financially supported by the Swiss National Science Foundation (Grants No. 200021–103768).


References


[1]   Rish M. A., Antimony, in Elements and their Compounds in the Environment (Eds E. Merian, M. Anke, M. Ihnat, M. Stoeppler) 2004, pp. 659–670 (Wiley-VHC: Weinheim).

[2]   Kabata-Pendias A., Pendias H., Trace Elements in Soils and Plants 1984 (CRC Press: Boca Raton, FL).

[3]   C. A. Johnson , H. Moench , P. Wersin , P. Kugler , C. Wenger , Solubility of antimony and other elements in samples taken from shooting ranges. J. Environ. Qual. 2005 , 34,  248.
        |  CAS | PubMed |  open url image1

[4]   M. Filella , N. Belzile , Y. W. Chen , Antimony in the environment: a review focused on natural waters I. Occurence. Earth Sci. Rev. 2002 , 57,  125.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[5]   Mathys R., Dittmar J., Johnson C. A., Antimony in Switzerland – a Substance Flow Analysis 2007 (Swiss Federal Office for the Environment: Berne).

[6]   C. P. Rooney , R. G. McLaren , R. J. Cresswell , Distribution and phytoavailability of lead in a soil contaminated with lead shot. Water Air Soil Pollut. 1999 , 116,  535.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   Gresch M., Wettstein B., Antimon- und Bleibelastung bei Schiessanlagen, Fallbeispiel Eschenbach (SG) 2002, B.Sc. semester thesis, ETH Zurich.

[8]   N. Ainsworth , J. A. Cooke , M. S. Johnson , Distribution of antimony in contaminated grassland. 1. Vegetation and soils. Environ. Pollut. 1990 , 65,  65.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[9]   F. Baroni , A. Boscagli , G. Protano , F. Riccobono , Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ. Pollut. 2000 , 109,  347.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[10]   J. Pratas , M. N. V. Prasad , H. Freitas , L. Conde , Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J. Geochem. Explor. 2005 , 85,  99.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[11]   R. D. Davis , P. H. T. Beckett , E. Wollan , Critical levels of 20 potentially toxic elements in young spring barley. Plant Soil 1978 , 49,  395.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[12]   W. Hammel , R. Debus , L. Steubing , Mobility of antimony in soil and its availability to plants. Chemosphere 2000 , 41,  1791.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   Nodari M., Schulin R., Reyer H. U., Robinson B. H., Investigating plant–antimony interactions: method development, plant tolerance, and plant uptake 2007, M.Sc. thesis, Universität Zürich.

[14]   M. C. Drew , Plant injury and adaptation to oxygen deficiency in the root environment: a review. Plant Soil 1983 , 75,  179.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   Jackson M. B., Drew M. C., Effects of flooding on growth and metabolism of herbaceous plants, in Flooding and Plant Growth (Ed. T. T. Kozlowski) 1984, pp. 47–128 (Academic Press: Orlando, FL).

[16]   Hoagland D. R., Arnon D. I., The water-culture method for growing plants without soil, in Circular of the Agricultural Experiment Station Berkeley, California 1938, Vol. 347 (University of California: Berkeley, CA).

[17]   U. Krämer , J. D. Cotter-Howells , J. M. Charnock , A. J. M. Baker , J. A. C. Smith , Free histidine as a metal chelator in plants that accumulate nickel. Nature 1996 , 379,  635.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   Massard G., Reiser R., Stadelmann V., Gupta S. K., Antimony-Contaminated Soils on Shooting Ranges 2006 (Swiss Federal Department of Economic Affairs: Zurich).

[19]   Sachs L., Angewandte Statistik 2004 (Springer: Heidelberg, Germany).

[20]   Reid R., Hayes J., Mechanisms and control of nutrient uptake in plants, in International Review of Cytology – a Survey of Cell Biology 2003, Vol. 229, pp. 73–114 (Academic Press Inc.: San Diego, CA).

[21]   P. F. Bell , M. J. McLaughlin , G. Cozens , D. P. Stevens , G. Owens , H. South , Plant uptake of 14C-EDTA, 14C-citrate, and 14C-histidine from chelator-buffered and conventional hydroponic solutions. Plant Soil 2003 , 253,  311.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   Wenger K., Tandy S., Nowack B., Effect of chelating agents on trace metal speciation and bioavailability, in Biogeochemistry of Chelating Agents (Eds J. Vanbriesen, B. Nowack) 2005, pp. 204–224 (American Chemical Society: Oxford, UK).

[23]   M. Filella , N. Belzile , M. C. Lett , Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions. Earth Sci. Rev. 2007 , 80,  195.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[24]   K. Oorts , E. Smolders , F. Degryse , J. Buekers , G. Gasco , G. Cornelis , J. Mertens , Solubility and toxicity of antimony trioxide (Sb2O3) in soil. Environ. Sci. Technol. 2008 , 42,  4378.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[25]   Bowen H. J. M., Environmental Chemistry of the Elements 1979 (Academic Press: London).