Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia
Kristy Telford A , William Maher A , Frank Krikowa A , Simon Foster A , Michael J. Ellwood B , Paul M. Ashley C , Peter V. Lockwood C and Susan C. Wilson C DA Ecochemistry Laboratory, Institute for Applied Ecology, Faculty of Applied Science, University of Canberra, Bruce, ACT 2601, Australia.
B Research School of Earth Sciences, Australian National University, Acton, ACT 0200, Australia.
C School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
D Corresponding author. Email: swilso24@une.edu.au
Environmental Chemistry 6(2) 133-143 https://doi.org/10.1071/EN08097
Submitted: 15 December 2008 Accepted: 12 February 2009 Published: 27 April 2009
Environmental context. Concern over the presence of antimony (Sb) in the environment because of chemical similarities with arsenic (As) has prompted a need to better understand its environmental behaviour and risks. The present study investigates the bioaccumulation and uptake of antimony in a highly contaminated stream near the Hillgrove antimony–gold mine in NSW, Australia, and reports high Sb (and As) concentrations in many components of the ecosystem consisting of three trophic levels, but limited uptake into aboveground parts of riparian vegetation. The data suggest that Sb can transfer into upper trophic levels of a creek ecosystem, but that direct exposure of creek fauna to creek sediment and soil, water and aquatic autotrophs are more important metalloid uptake routes than exposure via riparian vegetation.
Abstract. Bioaccumulation and uptake of antimony (Sb) were investigated in a highly contaminated stream, Bakers Creek, running adjacent to mining and processing of Sb–As ores at Hillgrove Mine, NSW, Australia. Comparisons with arsenic (As) were included owing to its co-occurrence at high concentrations. Mean metalloid creek rhizome sediment concentrations were 777 ± 115 μg g–1 Sb and 60 ± 6 μg g–1 As, with water concentrations at 381 ± 23 μg L–1 Sb and 46 ± 2 μg L–1 As. Antimony and As were significantly elevated in aquatic autotrophs (96–212 μg g–1 Sb and 32–245 μg g–1 As) but Sb had a lower uptake efficiency. Both metalloids were elevated in all macroinvertebrates sampled (94–316 μg g–1 Sb and 1.8–62 μg g–1 As) except Sb in gastropods. Metalloids were detected in upper trophic levels although biomagnification was not evident. Metalloid transfer to riparian vegetation leaves from roots and rhizome soil was low but rhizome soil to leaf As concentration ratios were up to 2–3 times greater than Sb concentration ratios. Direct exposure to the rhizosphere sediments and soils, water ingestion and consumption of aquatic autotrophs appear to be the major routes of Sb and As uptake for the fauna of Bakers Creek.
Additional keywords: ecosystem, food web, uptake.
Acknowledgements
The authors would like to thank the NSW Environment Trust for funding the project and Straits Hillgrove Gold for allowing access to the site and providing logistical support. We thank Hugh Doyle for assistance in sample collection.
[1]
K. H. Wedepohl ,
The composition of the continental crust.
Geochim. Cosmochim. Acta 1995
, 59, 1217.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[Verified 19 March 2009]
[24]
P. M. Ashley ,
B. P. Graham ,
M. K. Tighe ,
B. J. Wolfenden ,
Antimony and arsenic dispersion in the Macleay River catchment, New South Wales: a study of the environmental geochemical consequences.
Aust. J. Earth Sci. 2007
, 54, 83.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
P. M. Ashley ,
D. Craw ,
B. P. Graham ,
D. A. Chappell ,
Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand.
J. Geochem. Explor. 2003
, 77, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
[27]
[28]
M. Tighe ,
P. M. Ashley ,
P. Lockwood ,
S. Wilson ,
Soil, water and pasture enrichment of antimony and arsenic within a coastal floodplain system.
Sci. Total Environ. 2005
, 347, 175.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[29]
[30]
[31]
S. Baldwin ,
M. Deaker ,
W. Maher ,
Low-volume microwave digestion of marine biological tissues for the measurement of trace elements.
Analyst 1994
, 119, 1701.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[32]
K. Telford ,
W. Maher ,
F. Krikowa ,
S. Foster ,
Measurement of total antimony and antimony species in mine contaminated soils by ICPMS and HPLC-ICPMS.
J. Environ. Monit. 2008
, 10, 136.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[33]
W. Maher ,
S. Forster ,
F. Krikowa ,
P. C. Snitch ,
G. Chapple ,
P. Craig ,
Measurement of trace elements and phosphorus in marine animal and plant tissues by low-volume microwave digestion and ICP-MS.
Atom. Spectrosc. 2001
, 22, 361.
|
CAS |
[34]
B. C. Chessman ,
New sensitivity grade for Australian river macroinvertebrates.
Marine Freshwat. Res. 2003
, 54, 95.
| Crossref | GoogleScholarGoogle Scholar |
[35]
[36]
[37]
M. O. Doyle ,
M. L. Otte ,
Organism-induced accumulation of iron, zinc and arsenic in wetland soils.
Environ. Pollut. 1997
, 96, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[38]
M. Filella ,
N. Belzile ,
M.-C. Lett ,
Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions.
Earth Sci. Rev. 2007
, 80, 195.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[39]
R. Schaeffer ,
K. A. Francesconi ,
N. Kienzl ,
C. Soeroes ,
P. Fodor ,
L. Varadi ,
R. Raml ,
W. Goessler ,
D. Kuehnelt ,
Arsenic speciation in freshwater organisms from the river Danube in Hungary.
Talanta 2006
, 69, 856.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[40]
I. Sanchez-Rodriguez ,
M. A. Huerta-Diaz ,
E. Choumilime ,
O. Holguin-Quinones ,
J. A. Zertuche-Gonzalez ,
Elemental concentrations in different species of seaweeds from Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue.
Environ. Pollut. 2001
, 114, 145.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[41]
R. Tukai ,
W. A. Maher ,
I. J. McNaught ,
M. J. Ellwood ,
M. Coleman ,
Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia.
Mar. Freshwater Res. 2002
, 53, 971.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[42]
D. Thomson ,
W. Maher ,
S. Foster ,
Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia.
Appl. Organomet. Chem. 2007
, 21, 396.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[43]
E. I. Hozhina ,
A. A. Khramov ,
P. A. Gerasimov ,
A. A. Kumarkov ,
Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries.
J. Geochem. Explor. 2001
, 74, 153.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[44]
L. W. Jacobs ,
D. R. Keeney ,
Arsenic–phosphorus interactions on corn.
Commun. Soil Sci. Plant Anal. 1970
, 1, 85.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[45]
M. L. Otte ,
M. J. Dekkers ,
J. Rozema ,
R. A. Broekman ,
Uptake of arsenic by Aster tripolium in relation to rhizosphere oxidation.
Can. J. Bot. 1991
, 69, 2670.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[46]
B. Robinson ,
N. Kim ,
M. Marchetti ,
C. Moni ,
L. Schroeter ,
C. van den Dijssel ,
G. Milne ,
B. Clothier ,
Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand.
Environ. Exp. Bot. 2006
, 58, 206.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[47]
V. Mishra ,
A. Upadhyaya ,
S. Pandey ,
B. Tripathi ,
Heavy metal pollution induced due to coal mining effluent in surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes.
Bioresour. Technol. 2008
, 99, 930.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[48]
D. Emerson ,
J. Weiss ,
P. Megonigal ,
Iron-oxidising bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants.
Appl. Environ. Microbiol. 1999
, 65, 2758.
|
CAS |
PubMed |
[49]
W. Liu ,
Y. Zhu ,
F. Smith ,
S. Smith ,
Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in a solution culture?
J. Exp. Biol. 2004
, 55, 1707.
|
CAS |
[50]
S. Liu ,
Y. Wang ,
L. Yu ,
J. Oakey ,
Thermodynamic equilibrium study of trace element transformation during underground coal gasification.
Fuel Process. Technol. 2006
, 87, 209.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[51]
N. K. Blute ,
D. J. Brabander ,
H. F. Hemond ,
S. R. Sutton ,
M. G. Newville ,
M. L. Rivers ,
Arsenic sequestration by ferric iron plaque on cattail roots.
Environ. Sci. Technol. 2004
, 38, 6074.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[52]
D. Thomson ,
W. Maher ,
S. Foster ,
Arsenic and selected elements in marine angiosperms, south-east coast, NSW, Australia.
Appl. Organomet. Chem. 2007
, 21, 381.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[53]
M. Tighe ,
P. V. Lockwood ,
S. Wilson ,
Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid.
J. Environ. Monit. 2005
, 7, 1177.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[54]
M. Tighe ,
P. V. Lockwood ,
The importance of non-crystalline hydroxide phases in sequential extractions to fractionate antimony in acid soils.
Comm. Soil Sci. Plant Anal. 2007
, 38, 1487.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[55]
M. Manaka ,
Amount of amorphous materials in relationship to arsenic, antimony, and bismuth concentrations in a brown forest soil.
Geoderma 2006
, 136, 75.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[56]
B. J. Mathis ,
T. F. Cummings ,
Selected metals in sediments, water and biota in the Illinois River.
J. Water Pollut. Control Fed. 1973
, 45, 1573.
|
CAS |
PubMed |
[57]
N. Ainsworth ,
J. A. Cooke ,
Distribution of antimony in contaminated grassland: 2. Small mammals and invertebrates.
Environ. Pollut. 1990
, 65, 79.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[58]
M. G. Vijver ,
J. P. M. Vink ,
C. J. H. Miermans ,
C. A. M. van Gestel ,
Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms.
Soil Biol. Biochem. 2003
, 35, 125.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[59]
P. M. Kiffney ,
W. H. Clements ,
Bioaccumulation of heavy metals by benthic invertebrates at the Arkansas River, Colorado.
Environ. Toxicol. Chem. 1993
, 12, 1507.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[60]
K. L. Goodyear ,
S. McNeill ,
Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review.
Sci. Total Environ. 1999
, 229, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[61]
N. J. Bouskill ,
R. D. Handy ,
T. E. Ford ,
T. S. Galloway ,
Differentiating copper and arsenic toxicity using biochemical markers in Asellus aquaticus and Dreissena polymorpha.
Ecotoxicol. Environ. Saf. 2006
, 65, 342.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[62]
A. Milton ,
M. Johnson ,
Arsenic in the food chains of a revegetated metalliferous mine tailings pond.
Chemosphere 1999
, 39, 765.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[63]
C. Mori ,
A. Orsini ,
C. Migon ,
Impact of arsenic and antimony contamination on benthic invertebrates in a minor Corsican river.
Hydrobiologia 1999
, 392, 73.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[64]
M. Duran ,
Y. Kara ,
G. K. Akyildiz ,
A. Ozdemir ,
Antimony and heavy metals accumulation in some macroinvertebrates in the Yesilirmak River (N. Turkey) near the Sb-mining area.
Bull. Environ. Contam. Toxicol. 2007
, 78, 395.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[65]
J. Martins ,
M. L. Soares ,
M. L. Saker ,
L. Teles ,
V. M. Vasconcelos ,
Phototactic behavior in Daphnia magna Straus as an indicator of toxicants in the aquatic environment.
Ecotoxicol. Environ. Saf. 2007
, 67, 417.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[66]
[67]
M. C. Jung ,
I. Thornton ,
H.-T. Chon ,
Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu–W mine in Korea.
Sci. Total Environ. 2002
, 295, 81.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[68]
F. Baroni ,
A. Boscagli ,
G. Protano ,
F. Riccobono ,
Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area.
Environ. Pollut. 2000
, 109, 347.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[69]
J. Pratas ,
M. N. V. Prasad ,
H. Freitas ,
L. Conde ,
Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation.
J. Geochem. Explor. 2005
, 85, 99.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[70]
A. Murciego Murciego ,
A. García Sánchez ,
M. A. Rodríguez González ,
E. Pinilla Gil ,
C. Toro Gordillo ,
J. Cabezas Fernández ,
T. Buyolo Triguero ,
Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb mining areas in Extremadura (Spain).
Environ. Pollut. 2007
, 145, 15.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[71]
N. Ainsworth ,
J. A. Cooke ,
Distribution of antimony in contaminated grassland: 1. Vegetation and soils.
Environ. Pollut. 1990
, 65, 65.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[72]
H. C. Flynn ,
A. A. Meharg ,
P. K. Bowyer ,
G. I. Paton ,
Antimony bioavailability in mine soils.
Environ. Pollut. 2003
, 124, 93.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[73]
S. Foster ,
W. Maher ,
A. Taylor ,
F. Krikowa ,
K. Telford ,
Distribution and speciation of arsenic in temperate marine saltmarsh ecosystems.
Environ. Chem. 2005
, 2, 177.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[74]
M. Tschan ,
B. Robinson ,
R. Schulin ,
Antimony uptake by Zea mays (L.) and Helianthus annus (L.) from nutrient solution.
Environ. Geochem. Health 2008
, 30, 187.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[75]
P. Madejon ,
N. W. Lepp ,
Arsenic in soils and plants of woodland regenerated on an arsenic-contaminated substrate: a sustainable natural remediation.
Sci. Total Environ. 2007
, 379, 256.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |