Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia

Kristy Telford A , William Maher A , Frank Krikowa A , Simon Foster A , Michael J. Ellwood B , Paul M. Ashley C , Peter V. Lockwood C and Susan C. Wilson C D
+ Author Affiliations
- Author Affiliations

A Ecochemistry Laboratory, Institute for Applied Ecology, Faculty of Applied Science, University of Canberra, Bruce, ACT 2601, Australia.

B Research School of Earth Sciences, Australian National University, Acton, ACT 0200, Australia.

C School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.

D Corresponding author. Email: swilso24@une.edu.au

Environmental Chemistry 6(2) 133-143 https://doi.org/10.1071/EN08097
Submitted: 15 December 2008  Accepted: 12 February 2009   Published: 27 April 2009

Environmental context. Concern over the presence of antimony (Sb) in the environment because of chemical similarities with arsenic (As) has prompted a need to better understand its environmental behaviour and risks. The present study investigates the bioaccumulation and uptake of antimony in a highly contaminated stream near the Hillgrove antimony–gold mine in NSW, Australia, and reports high Sb (and As) concentrations in many components of the ecosystem consisting of three trophic levels, but limited uptake into aboveground parts of riparian vegetation. The data suggest that Sb can transfer into upper trophic levels of a creek ecosystem, but that direct exposure of creek fauna to creek sediment and soil, water and aquatic autotrophs are more important metalloid uptake routes than exposure via riparian vegetation.

Abstract. Bioaccumulation and uptake of antimony (Sb) were investigated in a highly contaminated stream, Bakers Creek, running adjacent to mining and processing of Sb–As ores at Hillgrove Mine, NSW, Australia. Comparisons with arsenic (As) were included owing to its co-occurrence at high concentrations. Mean metalloid creek rhizome sediment concentrations were 777 ± 115 μg g–1 Sb and 60 ± 6 μg g–1 As, with water concentrations at 381 ± 23 μg L–1 Sb and 46 ± 2 μg L–1 As. Antimony and As were significantly elevated in aquatic autotrophs (96–212 μg g–1 Sb and 32–245 μg g–1 As) but Sb had a lower uptake efficiency. Both metalloids were elevated in all macroinvertebrates sampled (94–316 μg g–1 Sb and 1.8–62 μg g–1 As) except Sb in gastropods. Metalloids were detected in upper trophic levels although biomagnification was not evident. Metalloid transfer to riparian vegetation leaves from roots and rhizome soil was low but rhizome soil to leaf As concentration ratios were up to 2–3 times greater than Sb concentration ratios. Direct exposure to the rhizosphere sediments and soils, water ingestion and consumption of aquatic autotrophs appear to be the major routes of Sb and As uptake for the fauna of Bakers Creek.

Additional keywords: ecosystem, food web, uptake.


Acknowledgements

The authors would like to thank the NSW Environment Trust for funding the project and Straits Hillgrove Gold for allowing access to the site and providing logistical support. We thank Hugh Doyle for assistance in sample collection.


References


[1]   K. H. Wedepohl , The composition of the continental crust. Geochim. Cosmochim. Acta 1995 , 59,  1217.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  [Verified 19 March 2009]

[24]   P. M. Ashley , B. P. Graham , M. K. Tighe , B. J. Wolfenden , Antimony and arsenic dispersion in the Macleay River catchment, New South Wales: a study of the environmental geochemical consequences. Aust. J. Earth Sci. 2007 , 54,  83.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[25]   P. M. Ashley , D. Craw , B. P. Graham , D. A. Chappell , Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. J. Geochem. Explor. 2003 , 77,  1.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   Wolfenden B. J., Geochemical behavior of metalliferous contaminants in the upper Macleay gorges, northern NSW 2002, B.Sc.(Hons) thesis, University of New England, Armidale, NSW.

[27]   Smolders K., The effects of heavy metal contamination on benthic macroinvertebrates inhabiting streams in the upper Macleay catchment 2002, B.EnvSc.(Hons) thesis, University of New England, Armidale, NSW.

[28]   M. Tighe , P. M. Ashley , P. Lockwood , S. Wilson , Soil, water and pasture enrichment of antimony and arsenic within a coastal floodplain system. Sci. Total Environ. 2005 , 347,  175.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[29]   Ashley P. M., Graham B. P., Heavy metal loadings of streams in the Macleay River catchment. Report to Mid North Coast Catchment Management Board, NSW. Open File Report GS2001/303 2001 (Geological Survey of New South Wales).

[30]   Nichols S., Coysh J., Sloan P., Williams C., Norris R., Australian Capital Territory Australian River Assessment System (AUSRIVAS) sampling procedure manual, Cooperative Research Centre for Freshwater Ecology 2002 (University of Canberra: Canberra, ACT).

[31]   S. Baldwin , M. Deaker , W. Maher , Low-volume microwave digestion of marine biological tissues for the measurement of trace elements. Analyst 1994 , 119,  1701.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[32]   K. Telford , W. Maher , F. Krikowa , S. Foster , Measurement of total antimony and antimony species in mine contaminated soils by ICPMS and HPLC-ICPMS. J. Environ. Monit. 2008 , 10,  136.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[33]   W. Maher , S. Forster , F. Krikowa , P. C. Snitch , G. Chapple , P. Craig , Measurement of trace elements and phosphorus in marine animal and plant tissues by low-volume microwave digestion and ICP-MS. Atom. Spectrosc. 2001 , 22,  361.
        |  CAS |  open url image1

[34]   B. C. Chessman , New sensitivity grade for Australian river macroinvertebrates. Marine Freshwat. Res. 2003 , 54,  95.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   NHMRC, NRMMC, Australian drinking water guidelines 2004, national water quality management strategy 2004 (National Health and Medical Research Council and the Natural Resource Management Ministerial Council: Canberra, ACT).

[36]   ANZECC, ARMCANZ, Australian and New Zealand guidelines for fresh and marine water quality 2000 (Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand: Canberra, ACT).

[37]   M. O. Doyle , M. L. Otte , Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environ. Pollut. 1997 , 96,  1.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[38]   M. Filella , N. Belzile , M.-C. Lett , Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions. Earth Sci. Rev. 2007 , 80,  195.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   R. Schaeffer , K. A. Francesconi , N. Kienzl , C. Soeroes , P. Fodor , L. Varadi , R. Raml , W. Goessler , D. Kuehnelt , Arsenic speciation in freshwater organisms from the river Danube in Hungary. Talanta 2006 , 69,  856.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[40]   I. Sanchez-Rodriguez , M. A. Huerta-Diaz , E. Choumilime , O. Holguin-Quinones , J. A. Zertuche-Gonzalez , Elemental concentrations in different species of seaweeds from Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue. Environ. Pollut. 2001 , 114,  145.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[41]   R. Tukai , W. A. Maher , I. J. McNaught , M. J. Ellwood , M. Coleman , Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia. Mar. Freshwater Res. 2002 , 53,  971.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[42]   D. Thomson , W. Maher , S. Foster , Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia. Appl. Organomet. Chem. 2007 , 21,  396.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[43]   E. I. Hozhina , A. A. Khramov , P. A. Gerasimov , A. A. Kumarkov , Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. J. Geochem. Explor. 2001 , 74,  153.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[44]   L. W. Jacobs , D. R. Keeney , Arsenic–phosphorus interactions on corn. Commun. Soil Sci. Plant Anal. 1970 , 1,  85.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[45]   M. L. Otte , M. J. Dekkers , J. Rozema , R. A. Broekman , Uptake of arsenic by Aster tripolium in relation to rhizosphere oxidation. Can. J. Bot. 1991 , 69,  2670.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[46]   B. Robinson , N. Kim , M. Marchetti , C. Moni , L. Schroeter , C. van den Dijssel , G. Milne , B. Clothier , Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ. Exp. Bot. 2006 , 58,  206.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[47]   V. Mishra , A. Upadhyaya , S. Pandey , B. Tripathi , Heavy metal pollution induced due to coal mining effluent in surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresour. Technol. 2008 , 99,  930.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[48]   D. Emerson , J. Weiss , P. Megonigal , Iron-oxidising bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Appl. Environ. Microbiol. 1999 , 65,  2758.
        |  CAS | PubMed |  open url image1

[49]   W. Liu , Y. Zhu , F. Smith , S. Smith , Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in a solution culture? J. Exp. Biol. 2004 , 55,  1707.
        |  CAS |  open url image1

[50]   S. Liu , Y. Wang , L. Yu , J. Oakey , Thermodynamic equilibrium study of trace element transformation during underground coal gasification. Fuel Process. Technol. 2006 , 87,  209.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[51]   N. K. Blute , D. J. Brabander , H. F. Hemond , S. R. Sutton , M. G. Newville , M. L. Rivers , Arsenic sequestration by ferric iron plaque on cattail roots. Environ. Sci. Technol. 2004 , 38,  6074.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[52]   D. Thomson , W. Maher , S. Foster , Arsenic and selected elements in marine angiosperms, south-east coast, NSW, Australia. Appl. Organomet. Chem. 2007 , 21,  381.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[53]   M. Tighe , P. V. Lockwood , S. Wilson , Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid. J. Environ. Monit. 2005 , 7,  1177.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[54]   M. Tighe , P. V. Lockwood , The importance of non-crystalline hydroxide phases in sequential extractions to fractionate antimony in acid soils. Comm. Soil Sci. Plant Anal. 2007 , 38,  1487.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[55]   M. Manaka , Amount of amorphous materials in relationship to arsenic, antimony, and bismuth concentrations in a brown forest soil. Geoderma 2006 , 136,  75.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[56]   B. J. Mathis , T. F. Cummings , Selected metals in sediments, water and biota in the Illinois River. J. Water Pollut. Control Fed. 1973 , 45,  1573.
        |  CAS | PubMed |  open url image1

[57]   N. Ainsworth , J. A. Cooke , Distribution of antimony in contaminated grassland: 2. Small mammals and invertebrates. Environ. Pollut. 1990 , 65,  79.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[58]   M. G. Vijver , J. P. M. Vink , C. J. H. Miermans , C. A. M. van Gestel , Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biol. Biochem. 2003 , 35,  125.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[59]   P. M. Kiffney , W. H. Clements , Bioaccumulation of heavy metals by benthic invertebrates at the Arkansas River, Colorado. Environ. Toxicol. Chem. 1993 , 12,  1507.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[60]   K. L. Goodyear , S. McNeill , Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Sci. Total Environ. 1999 , 229,  1.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[61]   N. J. Bouskill , R. D. Handy , T. E. Ford , T. S. Galloway , Differentiating copper and arsenic toxicity using biochemical markers in Asellus aquaticus and Dreissena polymorpha. Ecotoxicol. Environ. Saf. 2006 , 65,  342.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[62]   A. Milton , M. Johnson , Arsenic in the food chains of a revegetated metalliferous mine tailings pond. Chemosphere 1999 , 39,  765.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[63]   C. Mori , A. Orsini , C. Migon , Impact of arsenic and antimony contamination on benthic invertebrates in a minor Corsican river. Hydrobiologia 1999 , 392,  73.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[64]   M. Duran , Y. Kara , G. K. Akyildiz , A. Ozdemir , Antimony and heavy metals accumulation in some macroinvertebrates in the Yesilirmak River (N. Turkey) near the Sb-mining area. Bull. Environ. Contam. Toxicol. 2007 , 78,  395.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[65]   J. Martins , M. L. Soares , M. L. Saker , L. Teles , V. M. Vasconcelos , Phototactic behavior in Daphnia magna Straus as an indicator of toxicants in the aquatic environment. Ecotoxicol. Environ. Saf. 2007 , 67,  417.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[66]   A. Kabata-Pendias, Trace Elements in Soils and Plants 2000 (CRC Press: Boca Raton, FL).

[67]   M. C. Jung , I. Thornton , H.-T. Chon , Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu–W mine in Korea. Sci. Total Environ. 2002 , 295,  81.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[68]   F. Baroni , A. Boscagli , G. Protano , F. Riccobono , Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ. Pollut. 2000 , 109,  347.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[69]   J. Pratas , M. N. V. Prasad , H. Freitas , L. Conde , Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J. Geochem. Explor. 2005 , 85,  99.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[70]   A. Murciego Murciego , A. García Sánchez , M. A. Rodríguez González , E. Pinilla Gil , C. Toro Gordillo , J. Cabezas Fernández , T. Buyolo Triguero , Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb mining areas in Extremadura (Spain). Environ. Pollut. 2007 , 145,  15.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[71]   N. Ainsworth , J. A. Cooke , Distribution of antimony in contaminated grassland: 1. Vegetation and soils. Environ. Pollut. 1990 , 65,  65.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[72]   H. C. Flynn , A. A. Meharg , P. K. Bowyer , G. I. Paton , Antimony bioavailability in mine soils. Environ. Pollut. 2003 , 124,  93.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[73]   S. Foster , W. Maher , A. Taylor , F. Krikowa , K. Telford , Distribution and speciation of arsenic in temperate marine saltmarsh ecosystems. Environ. Chem. 2005 , 2,  177.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[74]   M. Tschan , B. Robinson , R. Schulin , Antimony uptake by Zea mays (L.) and Helianthus annus (L.) from nutrient solution. Environ. Geochem. Health 2008 , 30,  187.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[75]   P. Madejon , N. W. Lepp , Arsenic in soils and plants of woodland regenerated on an arsenic-contaminated substrate: a sustainable natural remediation. Sci. Total Environ. 2007 , 379,  256.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1