The aqueous geochemistry of thallium: speciation and solubility of thallium in low temperature systems
Yongliang XiongSandia National Laboratories, 4100 National Parks Highway, Carlsbad, NM 88220, USA. Email: yxiong@sandia.gov
Environmental Chemistry 6(5) 441-451 https://doi.org/10.1071/EN08086
Submitted: 6 November 2008 Accepted: 12 August 2009 Published: 22 October 2009
Environmental context. The aqueous geochemistry of thallium is not well known in comparison with cadmium and lead, although it is more highly toxic, and at the same time has a wide range of industrial applications. A database allowing us to reliably predict the speciation and solubility of thallium in various environments in low temperature systems would be invaluable in providing some understanding of thallium’s mobilisation and mitigation. We propose here such a thermodynamic database based on critical reviews.
Abstract. Thallium is a highly toxic element, and at the same time it has a wide range of applications in industry. Therefore, it is important to know its speciation and solubility under low temperature conditions. This study expands the thermodynamic database of the first paper of this series on the aqueous geochemistry of thallium by providing the formation constants of some important thallium complexes, including TlEDTA3–, TlOx– (Ox: oxalate), TlSuc– (Suc: succinate), TlMal– (Mal: malonate) and TlHPO4–. This study also recommends the solubility product constant of TlCl(s) as 10–3.65. The combined database allows us to model reliably the speciation and solubility of thallium in the Earth surface environments. As an example, the speciation and solubility of thallium in soil solutions are presented based on thermodynamic calculations.
Additional keywords: environmental mediation, Guizhou Province, lanmuchangite, lorandite, specific interaction theory (SIT).
Acknowledgements
Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.
[1]
[2]
L. Ralph ,
M. R. Twiss ,
Comparative toxicty of thallium(I), thallium(III), and cadmium(II) to the unicellular alga Chlorella isolated from Lake Erie.
Bull. Environ. Contam. Toxicol. 2002
, 68, 261.
|
CAS |
PubMed |
[3]
J. Pickard ,
R. Yang ,
B. Duncan ,
C. A. McDevitt ,
C. Eickhoft ,
Acute and sublethal toxicity of thallium to aquatic organisms.
Bull. Environ. Contam. Toxicol. 2001
, 66, 94.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[4]
T.-S. Lin ,
P. Meier ,
J. Nriagu ,
Acute toxicity of thallium to Daphnia magna and Ceriodaphnia dubia.
Bull. Environ. Contam. Toxicol. 2005
, 75, 350.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[5]
A. Léonard ,
G. B. Gerber ,
Mutagenicity, carcinogenicity and teratogenicity of thallium compounds.
Mutat. Res. Rev. Mutat. Res. 1997
, 387, 47.
| Crossref | GoogleScholarGoogle Scholar |
[6]
W. Scholl ,
Bestimmung von Thallium in verschiedenen anorganischen und organischen Matrices – ein einfaches photometrisches Routineverfahren mit Brillantgrun.
Landwirt. Forsch. 1980
, 37, 275.
|
CAS |
[7]
G. F. Hofer ,
K. Aichberger ,
U. S. Hochmair ,
Thalliumgehalte landwirtschaftlich genutzter Boden Oberosterreichs.
Die Bodenkultur: Journal for Land Management, Food and Environment 1990
, 41, 187.
|
CAS |
[8]
W. Qi ,
Y. Chen ,
J. Cao ,
Indium and thallium background contents in soils in China.
Int. J. Environ. Stud. 1992
, 40, 311.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[9]
[10]
M. Heim ,
O. Wappelhorst ,
B. Markert ,
Thallium in terrestrial environments-Occurrence and effects.
Ecotoxicology 2002
, 11, 369.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
A. Tremel ,
P. Masson ,
T. Sterckeman ,
D. Baize ,
M. Mench ,
Thallium in French agrosystems-I. Thallium contents in arable soils.
Environ. Pollut. 1997
, 95, 293.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
D. Zhou ,
D. Liu ,
Chronic thallium poisoning in a rural area of Guizhou province, China.
J. Environ. Health 1985
, 48, 14.
[13]
D. Stüben ,
Z. Berner ,
B. Kappes ,
H. Puchelt ,
Environmental monitoring of heavymetals and arsenic from Ag-Pb-Zn mining: A case study over two millennia.
Environ. Monit. Assess. 2001
, 70, 181.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[14]
J. Lis ,
A. Pasieczna ,
B. Karbowska ,
W. Zembrzuski ,
Z. Lukaszewski ,
Thallium in soils and stream sediments of a Zn-Pb mining and smelting area.
Environ. Sci. Technol. 2003
, 37, 4569.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
T.-F. Xiao ,
J. Guha ,
D. Boyle ,
C.-Q. Liu ,
C.-Q. Zheng ,
G. C. Wilson ,
A. Rouleau ,
Chen, Naturally occurring thallium: A hidden geoenvironmental health hazard?
Environ. Int. 2004
, 30, 501.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
M. Bäckström ,
H. Bohlin ,
S. Karlsson ,
N. G. Holm ,
Element (Ag, Cd, Cu, Pb, Sb, Tl and Zn), element ratio and lead isotope profiles in a sediment affected by a mining operation episode during the late 19th century.
Water Air Soil Pollut. 2006
, 177, 285.
| Crossref | GoogleScholarGoogle Scholar |
[17]
F. Martín ,
I. García ,
C. Dorronsoro ,
M. Simón ,
J. Aguilar ,
I. Ortíz ,
E. Fernández ,
J. Fernández ,
Thallium behavior in soils polluted by pyrite tailings (Aznalcollar, Spain).
Soil and Sediment Contamination: An International Journal 2004
, 13, 25.
| Crossref | GoogleScholarGoogle Scholar |
[18]
J. Medved’ ,
M. Kalis ,
I. Hagarova ,
P. Matus ,
M. Bujdos ,
J. Kubova ,
Thallium fractionation in polluted environmental samples using a modified BCR three-step sequential extraction procedure and its determination by electrothermal atomic adsorption spectrometry.
Chemical Papers 2008
, 62, 168.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[19]
Y.-L. Xiong ,
Hydrothermal thallium mineralization up to 300°C: a thermodynamic approach.
Ore Geol. Rev. 2007
, 32, 291.
| Crossref | GoogleScholarGoogle Scholar |
[20]
J. P. Manners ,
K. G. Morallee ,
R. J. P. Williams ,
The complex-ion chemistry of thallium(I).
J. Inorg. Nucl. Chem. 1971
, 33, 2085.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
[22]
D. D. Wagman ,
W. H. Evans ,
V. B. Parker ,
R. H. Schumm ,
I. Halow ,
S. Bailey ,
K. Churney ,
R. I. Nuttall ,
The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units.
J. Phys. Chem. Ref. Data 1982
, 11, 2-1.
[23]
[24]
L. Ciavatta ,
The specific interaction theory in evaluating ionic equilibria.
Ann. Chim. 1980
, 70, 551.
|
CAS |
[25]
H. C. Helgeson ,
D. H. Kirkham ,
G. C. Flowers ,
Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and partial molal and standard and relative partial molal properties to 600°C and 5 kb.
Am. J. Sci. 1981
, 281, 1249.
|
CAS |
[26]
[27]
[28]
Y.-L. Xiong ,
Estimation of medium effects on equilibrium constants in moderate and high ionic strength solutions at elevated temperatures by using specific interaction theory (SIT): interaction coefficients involving Cl–, OH– and Ac– up to 200°C and 400 bars.
Geochem. Trans. 2006
, 7, 4.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[29]
[30]
K. H. Khoo ,
K. R. Fernando ,
Solubility and activity coefficient of thallium(I) chloride in the system TlCl+HCl+NaCl+H2O at 25°C.
J. Solution Chem. 1991
, 20, 1199.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[31]
M. H. Panckhurst ,
J. B. Macaskill ,
Specific interactions in mixed electrolyte solutions from solubility measurements.
J. Solution Chem. 1976
, 5, 483.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[32]
K. H. Khoo ,
K. R. Fernando ,
R. J. Fereday ,
Solubility and Pitzer model parameters in thallium(I) chloride systems, TlCl+MgCl2+H2O and TlCl+CaCl2+H2O.
J. Chem. Soc., Faraday Trans. 1995
, 91, 1759.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[33]
K. H. Khoo ,
K. R. Fernando ,
R. J. Fereday ,
C.-Y. Chan ,
Pitzer model parameters for sparingly soluble salts from solubility measurement. The systems TlCl+SrCl2+H2O and TlCl+BaCl2+H2O.
J. Solution Chem. 1995
, 24, 1039.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[34]
P. W. Dimmock ,
P. Warwick ,
P. A. Robbins ,
Approaches to predicting stability constants.
Analyst 1995
, 120, 2159.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[35]
[36]
[37]
G. Tyler ,
T. Olsson ,
Conditions related to solubility of rare and minor elements in forest soils.
J. Plant Nutr. Soil Sci. 2002
, 165, 594.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[38]
B. W. Strobel ,
I. Bernhoht ,
O. K. Borggaard ,
Low-molecular-weight aliphatic carboxylic acids in soil solutions under different vegetations determined by capillary zone electrophoresis.
Plant Soil 1999
, 212, 115.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[39]
D. L. Jones ,
Organic acids in the rhizosphere – a critical review.
Plant Soil 1998
, 205, 25.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[40]
T. Mansfeldt ,
Redox potential of bulk soil and soil solution concentration of nitrate, manganese, iron, and sulfate in two Gleysols.
J. Plant Nutr. Soil Sci. 2004
, 167, 7.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[41]
[42]
[43]
[44]
S. Modabberi ,
F. Moore ,
Environmental geochemistry of Zarshuran Au-As deposit, NW Iran.
Environ. Geol. 2004
, 46, 796.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[45]
[46]
Z.-B. Li ,
L. M. Shuman ,
Extractability of zinc, cadmium, and nickel in soils amended with EDTA.
Soil Sci. 1996
, 161, 226.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[47]
I. Lo ,
W.-H. Zhang ,
Study on optimal conditions for recovery of EDTA from soil washing effluents.
J. Environ. Eng. 2005
, 131, 1507.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[48]
N. Papassiopi ,
S. Tambouris ,
A. Kontopoulos ,
Removal of heavy metals from calcareous contaminated soils by EDTA leaching.
Water Air Soil Pollut. 1999
, 109, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[49]
[50]
[51]
T.-F. Xiao ,
D. Bolye ,
J. Guha ,
A. Rouleau ,
Y. Hong ,
B.-S. Zheng ,
Groundwater-related thallium transfer processes and their impacts on the ecosystem: southwest Guizhou Province, China.
Appl. Geochem. 2003
, 18, 675.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[52]
[53]
D.-Y. Chen ,
G.-X. Wang ,
Z.-X. Zou ,
Y.-M. Chen ,
Lanmuchangite, a new thallium hydrous sulfate from Lanmuchang, Guizhou Province, China.
Chin. J. Geochem. 2003
, 22, 185.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[54]
G. E. Graham ,
K. D. Kelley ,
The Drenchwater deposit, Alaska: An example of natural low pH environment resulting from weathering of an undisturbed shale-hosted Zn-Pb-Ag deposit.
Appl. Geochem. 2009
, 24, 232.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[55]
A. R. Jacobson ,
M. B. McBride ,
P. Bayeye ,
T. Steenhuis ,
Environmental factors determining the trace-level sorption of silver and thallium to soils.
Sci. Total Environ. 2005
, 345, 191.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[56]
[57]