Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

N,N-Diethyl-p-phenylenediamine effectiveness in analysis of polysulfides and polythionates in water

Stephen Kariuki A B , Philippe Babady-Bila A and Breanna Duquette A
+ Author Affiliations
- Author Affiliations

A Nipissing University, Chemistry Division, Biology Department, 100 College Drive, North Bay, ON, P1B 8L7, Canada.

B Corresponding author. Email: stephenk@nipissingu.ca

Environmental Chemistry 5(3) 226-230 https://doi.org/10.1071/EN08020
Submitted: 25 February 2008  Accepted: 30 April 2008   Published: 19 June 2008

Environmental context. The importance of hydrogen sulfide as well as some of the reduced sulfur species such as polysulfides as environmental pollutants is a result of their toxicity, unpleasant odour, and their reactivity with metals and metallic ions found in various environmental samples. Although known to be popular, the effectiveness of N,N-diethyl-p-phenylenediamine and other related compounds in the spectrophotometric analysis of such sulfur compounds in water as well as in other environmental samples has not been fully investigated. Our results show that although the quantification of simple sulfides in the environmental samples may be easily accomplished spectrophotometrically by using N,N-diethyl-p-phenylenediamine, the level of difficulty in analysing such compounds may increase with their increasing sulfur chain.

Abstract. The analysis of polysulfides, polythionates and other sulfur species likely to be found in poorly aerated environmental samples such as water is presented. In-depth spectrophotometric testing carried out using N,N-diethyl-p-phenylenediamine shows that the well known acidification-and-purge method is not sufficiently suitable for the analysis of polysulfides and other low oxidation-state sulfur compounds that contain a sulfur chain longer than two. Further, this study finds that the use of chromium(II) which acts as a reducing agent to the sulfur-containing compounds improves the spectrophotometric analysis of the polysulfides and polythionates in water, but only slightly. The extent of reduction of polysulfides and polythionates to sulfide by chromium appears dependent upon the oxidation state of sulfur as well as the chain length in the polysulfidic compounds.

Additional keywords: sulfides, water analysis.


Acknowledgement

This research has been supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) (grant numbers: 312620-07 & 345524-07). The authors are also grateful to Dr David Hackett for his helpful suggestions in putting this manuscript together.


References


[1]   T. Jong , D. L. Parry , Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res. 2003 , 37,  3379.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[2]   Howarth R. W., Stewart J. W. B., Ivanov M. V., in Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies 1992, Vol. 48, p. 350 (Wiley: Chichester, UK).

[3]   J. Boulegue , C. J. Lord , T. M. Church , Sulfur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. Geochim. Cosmochim. Acta 1982 , 46,  453.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   Howarth R. W., Giblin A., Gale J., Peterson B. J., Luther G. W.III, Reduced sulphur components in the porewaters of a New England salt marsh, in Environmental Biogeochemistry, Ecological Bulletin (Stockholm) (Ed. R. Hallberg) 1983, Vol. 35, p. 135 (Forskningsrådsnämnden: Stockholm, Sweden).

[5]   G. W. Luther , A. E. Giblin , R. Varsolona , Polarographic analysis of sulfur species in marine porewaters. Limnol. Oceanogr. 1985 , 30,  727.
         open url image1

[6]   Patnaik P., A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd edn 2007, pp. 867–879 (Wiley: New York).

[7]   D. Fabbri , C. Locatelli , C. E. Snape , S. Tarabusi , Sulfur speciation in mercury-contaminated sediments of a coastal lagoon: the role of elemental sulfur. J. Environ. Monit. 2001 , 3,  483.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[8]   J. A. Jay , K. J. Murray , C. C. Gilmour , R. P. Mason , F. F. M. Morel , A. L. Roberts , H. F. Hemond , Mercury methylation by Desulfovibrio desulfuricans ND132 in the presence of polysulfdes. Appl. Environ. Microbiol. 2002 , 68,  5741.
        | PubMed |  open url image1

[9]   A. M. T. Bell , J. M. Charnock , G. R. Helz , A. R. Lennie , F. R. Livens , J. F. W. Mosselmans , R. A. D. Pattrick , D. J. Vaughan , Evidence for dissolved polymeric mercury(II)-sulfur complexes? Chem. Geol. 2007 , 243,  122.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   R. P. Smith , R. E. Gosselin , Hydrogen sulfide poisoning. J. Occup. Med. 1979 , 21,  93.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[11]   Clesceri L. S., Greenberg A. E., Eaton A. D. (Eds), Standard Methods for the Examination of Water and Wastewater, 20th edn 1998, part 4000, pp. 162, 173 (American Public Health Association: Washington, DC).

[12]   D. M. Di Toro , J. D. Mahony , D. J. Hansen , K. J. Scott , M. B. Hicks , S. M. Mayr , M. S. Redmond , Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ. Toxicol. Chem. 1990 , 9,  1487.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   Fishman J. M., Friedman C. L. (Eds), Methods for determination of Inorganic Substances in Water and Fluvial Sediments: Techniques of Water-Resources Investigations of the United States Geological Survey, 3rd edn 1989, Book 5, pp. 483–484 (US Geological Survey: Denver, CO).

[14]   Wechler F. J. (Ed.), Standard Methods of Chemical Analysis vol. 2, Industrial and Natural Products and Noninstrumental Methods, part B 1962, (Van Norstrand: New York).

[15]   G. A. Cutter , T. J. Oatts , Determination of dissolved sulfide and sedimentary sulfur speciation using gas chromatography-photoionization detection. Anal. Chem. 1987 , 59,  717.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   Armstrong G. W., Cooper M. D., Gill H. H., Green T. E., Grimes M. D., Heinrich B. J., Horton C. A., Puckett J. E., Rolf R. F., Rulfs C. L., Turley M. E., Winter P. K., in Treatise on Analytical Chemistry, Vol. 7, part 2 (Eds I. M. Kolthoff, P. J. Elving, E. B. Sandell) 1961, pp. 75–79 (Wiley Interscience: New York).

[17]   D. T. Pierce , M. S. Applebee , C. Lacher , J. Bessie , Low parts per billion determination of sulfide by coulometric argentometry. J. Environ. Sci. Technol. 1998 , 32,  1734.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   W. L. Bamesberger , D. F. Adams , Improvements in the collection of hydrogen sulfide in cadmium hydroxide suspension. Environ. Sci. Technol. 1969 , 3,  258.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   X. Hu , Z. Leng , Determination of trace-levels of sulfide by high-sensitivity potentiometry with a carbon paste electrode. Anal. Commun. 1996 , 33,  297.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   M. A. Baldo , S. Daniele , C. Bragato , G. A. Mazzocchin , Voltammetric investigation on sulfide ions in aqueous solutions with mercury-coated platinum microelectrodes. Anal. Chim. Acta 2002 , 464,  217.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   S. S. M. Hassan , S. A. M. Marzouk , H. E. M. Sayour , Methylene blue potentiometric sensor for selective determination of sulfide ions. Anal. Chim. Acta 2002 , 466,  47.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   N. S. Lawrence , J. Davis , R. G. Compton , Analytical strategies for the detection of sulfide: a review. Talanta 2000 , 52,  771.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   Fischer E., Bildung von methylenblau als reaktion auf schwefelwasserstoff. Chem. Ber. 1883, 16, 2234. [in German]

[24]   Williams W. J., Handbook of Anion Determination 1979 (Butterworths: London, UK).

[25]   V. Kuban , P. K. Dasgupta , J. N. Marx , Nitroprusside and methylene blue methods for silicone membrane differentiated flow injection determination of sulfide in water and wastewater. Anal. Chem. 1992 , 64,  36.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[26]   J. D. Cline , Spectrophotometric determination of hydrogen sulfide in natural waters. Limol. Oceanogr. 1969 , 14,  454.
         open url image1

[27]   K. C. Bowles , R. A. Bell , M. J. Ernste , J. R. Kramer , H. Manolopoulos , N. Ogden , Synthesis and characterization of metal sulfide clusters for toxicological studies. Environ. Toxicol. Chem. 2002 , 21,  693.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[28]   J. Radford-Knoery , G. A. Cutter , Determination of carbonyl sulfide and hydrogen sulfide species in natural waters using specialized collection procedures and gas chromatography with flame photometric detection. Anal. Chem. 1993 , 65,  976.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   D. E. Canfield , R. Raiswell , J. T. Westrich , C. M. Reaves , R. A. Berner , The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 1986 , 54,  149.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   H. Fossing , B. B. Jorgensen , Measurement of bacterial sulfate reduction in sediments – Evaluation of a single-step chromium reduction method. Biogeochemistry 1989 , 8,  205.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   E. Rosen , R. Tegman , Preparative and X-Ray powder diffraction study of the polysulfides, Na2S2, Na2S4 and Na2S5. Acta Chem. Scand. 1971 , 25,  3329.
         open url image1

[32]   Z. Uddin , R. Markuszewski , D. C. Johnson , Determination of inorganic sulfur species in highly alkaline solutions by liquid chromatography with polarographic determination. Anal. Chim. Acta 1987 , 200,  115.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   P. Kokkonen , H. Hyvärinen , Determination of sulfur anions by high-performance liquid chromatography. Anal. Chim. Acta 1988 , 207,  301.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   R. Steudel , G. Holdt , T. Göbel , Ion-pair chromatographic separation of inorganic sulphur anions including polysulphide. J. Chrom. 1989 , 475,  442.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   Goifman A., Calculation of inorganic polysulfide distribution in aqueous media 1999, M.Sc. thesis, Hebrew University, Jerusalem, Israel. [in Hebrew]

[36]   S. Kage , T. Nagata , K. Kudo , Determination of polysulfides in blood by gas chromatography-mass spectrometry. J. Chrom. 1991 , 564,  163.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   A. Kamyshny , A. Goifman , D. Rizkov , O. Lev , Kinetics of disproportionation of inorganic polysulfides in undersaturated aqueous solutions at environmentally relevant conditions. Aquat. Geochem. 2003 , 9,  291.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   T. F. Rozan , S. M. Theberge , G. W. Luther , Quantifying elemental sulfur (S0), bisulfide (HS-) and polysulfides (Sx2-) using a voltammetric method. Anal. Chim. Acta 2000 , 415,  175.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   S. E. Mylon , H. Hu , G. Benoit , Unsuitability of Cr(II) reduction for the measurement of sulfides in oxic water samples. Anal. Chem. 2002 , 74,  661.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[40]   Lide D. R. (Ed.), Handbook of Chemistry and Physics, 85th edn 2004, pp. 8–27 (CRC: New York).

[41]   D. Tang , P. H. Santschi , Sensitive determination of dissolved sulfide in estuarine water by solid-phase extraction and high-performance liquid chromatography of methylene blue. J. Chromatogr. A 2000 , 883,  305.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[42]   J. M. Small , H. Hintelmann , Methylene blue derivatization then LC–MS analysis for measurement of trace levels of sulfide in aquatic samples. Anal. Bioanal. Chem. 2007 , 387,  2881.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1