Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

High-resolution two-dimensional quantitative analysis of phosphorus, vanadium and arsenic, and qualitative analysis of sulfide, in a freshwater sediment

Anthony Stockdale A , William Davison A B and Hao Zhang A
+ Author Affiliations
- Author Affiliations

A Department of Environmental Science, Lancaster Environment Centre (LEC), Lancaster University, Lancaster, LA1 4YQ, UK.

B Corresponding author. Fax: +44 (0) 1524 593985. Email: w.davison@lancaster.ac.uk

Environmental Chemistry 5(2) 143-149 https://doi.org/10.1071/EN07096
Submitted: 20 December 2007  Accepted: 22 February 2008   Published: 17 April 2008

Environmental context. Chemical characterisation of sediment microniches can reveal diagenetic processes that may not be detected by larger-scale analysis. With the development of a new preparation method for a binding phase gel, the technique of diffusive gradients in thin films has been used to demonstrate links between the diagenesis of sulfide, phosphorus, vanadium and arsenic at microniches. Knowledge of these processes may improve predictions of past deposition climates where trace elements are considered as paleoredox proxies.

Abstract. Recently introduced techniques that can provide two-dimensional images of solution concentrations in sediments for multiple analytes have revealed discrete sites of geochemical behaviour different from the average for that depth (microniches). We have developed a new preparation method for a binding phase, incorporated in a hydrogel, for the diffusive gradients in thin films (DGT) technique. It allows co-analysis of sulfide and the reactive forms of phosphorus, vanadium and arsenic in the porewaters at the surface of the device. This gel, when dried and analysed using laser ablation mass spectrometry, allows the acquisition of high-resolution sub-millimetre-scale data. The binding phase was deployed within a DGT device in a sediment core collected from a productive lake, Esthwaite Water (UK). Localised removal of phosphate and vanadium from the porewaters has been demonstrated at a microniche of local sulfide production. The possible removal processes, including bacterial uptake and reduction of vanadate to insoluble VIII by sulfide, are discussed. Understanding processes occurring at this scale may allow improved prediction of pollutant fate and better prediction of past climates where trace metals are used as paleoredox proxies.

Additional keywords: DGT, early diagenesis, laser ablation, microniche, phosphate.


Acknowledgements

We thank Kent Warnken for providing expertise with the laser ablation set-up and use of the time resolved analysis data processing (TRA) application in PlasmaLab, and Debbie Hurst for assistance with sample collection. A. Stockdale was supported by funding from the UK Natural Environment Research Council (NER/S/A/2005/13679).


References


[1]   R. N. Glud , N. B. Ramsing , J. K. Gundersen , I. Klimant , Planar optrodes: a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities. Mar. Ecol. Prog. Ser. 1996 , 140,  217.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   S. Hulth , R. C. Aller , P. Engstrom , E. Selander , A pH plate fluorosensor (optode) for early diagenetic studies of marine sediments. Limnol. Oceanogr. 2002 , 47,  212.
         open url image1

[3]   Q. Z. Zhu , R. C. Aller , Y. Z. Fan , A new ratiometric, planar fluorosensor for measuring high resolution, two-dimensional pCO2 distributions in marine sediments. Mar. Chem. 2006 , 101,  40.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   C. R. Devries , F. Y. Wang , In situ two-dimensional high-resolution profiling of sulfide in sediment interstitial waters. Environ. Sci. Technol. 2003 , 37,  792.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[5]   K. W. Warnken , H. Zhang , W. Davison , Performance characteristics of suspended particulate reagent–iminodiacetate as a binding agent for diffusive gradients in thin films. Anal. Chim. Acta 2004 , 508,  41.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   D. Jézéquel , R. Brayner , E. Metzger , E. Viollier , F. Prévot , F. Fiévet , Two-dimensional determination of dissolved iron and sulfur species in marine sediment pore-waters by thin-film based imaging. Thau lagoon (France). Estuar. Coast. Shelf Sci. 2007 , 72,  420.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   S. M. Shuttleworth , W. Davison , J. Hamilton-Taylor , Two-dimensional and fine structure in the concentrations of iron and manganese in sediment pore-waters. Environ. Sci. Technol. 1999 , 33,  4169.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   Stockdale A., Davison W., Zhang H., Experimental evidence for micro-scale biogeochemical heterogeneity in sediments: a review. Earth Sci. Rev., in press.

[9]   R. B. Wanty , M. B. Goldhaber , Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks. Geochim. Cosmochim. Acta 1992 , 56,  1471.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   C. Bloomfield , W. I. Kelso , The mobilization and fixation of molybdenum, vanadium and uranium by decomposing organic matter. J. Soil Sci. 1973 , 24,  368.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   R. K. Skogerboe , S. A. Wilson , Reduction of ionic species by fulvic acid. Anal. Chem. 1981 , 53,  228.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   M. A. Huerta-Diaz , A. Tessier , R. Carignan , Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Appl. Geochem. 1998 , 13,  213.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   T. J. Shaw , J. M. Gieskes , R. A. Jahnke , Early diagenesis in differing depositional environments – the response of transition metals in pore water. Geochim. Cosmochim. Acta 1990 , 54,  1233.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   J. Crusius , S. Calvert , T. Pedersen , D. Sage , Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett. 1996 , 145,  65.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   P. M. Fox , H. E. Doner , Accumulation, release, and solubility of arsenic, molybdenum and vanadium in wetland sediments. J. Environ. Qual. 2003 , 32,  2428.
        | PubMed |  open url image1

[16]   J. L. Morford , S. R. Emerson , E. J. Breckel , S. H. Kim , Diagenesis of oxyanions (V, U, Re and Mo) in pore waters and sediments from a continental margin. Geochim. Cosmochim. Acta 2005 , 69,  5021.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   Y. Tezuka , Bacterial regeneration of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substrates. Microb. Ecol. 1990 , 19,  227.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   H. Zhang , W. Davison , R. Gadi , T. Kobayashi , In situ measurements of dissolved phosphorus in natural waters using DGT. Anal. Chim. Acta 1998 , 370,  29.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   A. C. Lasaga , The kinetic treatment of geochemical cycles. Geochim. Cosmochim. Acta 1980 , 44,  815.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   B. D. Honeyman , P. H. Santschi , Metals in aquatic systems. Environ. Sci. Technol. 1988 , 22,  862.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   H. Zhang , W. Davison , R. J. G. Mortimer , M. D. Krom , P. J. Hayes , I. M. Davies , Localised remobilization of metals in a marine sediment. Sci. Total Environ. 2002 , 296,  175.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[22]   C. Naylor , W. Davison , M. Motelica-Heino , G. A. van den Berg , L. M. van der Heijdt , Simultaneous release of sulphide with Fe, Mn, Ni and Zn in marine harbour sediments measured using a combined metal/sulphide DGT probe. Sci. Total Environ. 2004 , 328,  275.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[23]   Davison W., Fones G., Harper M., Teasdale P., Zhang H., Dialysis, DET and DGT: in situ diffusional techniques for studying water, sediment and soils, in In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation (Eds J. Buffle, G. Horvai) 2000, pp. 495–570 (Wiley: Chichester, UK).

[24]   P. R. Teasdale , S. Hayward , W. Davison , In situ, high-resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer-imaging densitometry. Anal. Chem. 1999 , 71,  2186.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   A. Widerlund , W. Davison , Size and density distribution of sulfhide-producing microniches in lake sediments. Environ. Sci. Technol. 2007 , 41,  8044.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[26]   Schwertmann U., Cornell R. M., Iron Oxides in the Laboratory, Preparation and Characterization, 2nd edn 2000 (Wiley-VCH: Weinheim).

[27]   W. Davison , Iron and manganese in lakes. Earth Sci. Rev. 1993 , 34,  119.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   U. Uehlinger , Bacteria and phosphorus regeneration in lakes. An experimental study. Hydrobiologia 1986 , 135,  197.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   R. Garcia-Ruiz , J. Lucena , F. X. Neill , Do bacteria regenerate phosphorus while decomposing seston? Mar. Freshwater Res. 1999 , 50,  459.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[30]   D. O. Hessen , G. I. Agren , T. R. Anderson , J. J. Elser , P. C. de Reiter , Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 2004 , 85,  1179.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   Q. Z. Zhu , R. C. Aller , Y. Z. Fan , Two-dimensional pH distributions and dynamics in bioturbated marine sediments. Geochim. Cosmochim. Acta 2006 , 70,  4933.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   R. L. Robson , R. R. Eady , T. H. Richardson , R. W. Miller , M. Hawkins , J. R. Postgate , The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature 1986 , 322,  388.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[33]   A. A. Tsygankov , Nitrogen-fixing cyanobacteria: a review. Appl. Biochem. Microbiol. 2007 , 43,  250.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   J. M. L. Bell , J. C. Philp , M. S. Kuyukina , I. B. Ivshina , S. A. Dunbar , C. J. Cunningham , P. Anderson , Methods evaluating vanadium tolerance in bacteria isolated from crude oil-contaminated land. J. Microbiol. Methods 2004 , 58,  87.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[35]   D. R. Lovley , Dissimilatory metal reduction. Annu. Rev. Microbiol. 1993 , 47,  263.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[36]   R. W. Collier , Particulate and dissolved vanadium in the North Pacific Ocean. Nature 1984 , 309,  441.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   J. J. Middelberg , D. Hoede , H. A. van der Sloot , C. H. van der Weijden , J. Wijkstra , Arsenic, antimony and vanadium in the North Atlantic Ocean. Geochim. Cosmochim. Acta 1988 , 52,  2871.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   Y. Harita , T. Hori , M. Sugiyama , Release of trace oxyanions from littoral sediments and suspended particles induced by pH increase in the epilimnion of lakes. Limnol. Oceanogr. 2005 , 50,  636.
         open url image1

[39]   A. M. Shiller , E. A. Boyle , Dissolved vanadium in rivers and estuaries. Earth Planet. Sci. Lett. 1987 , 86,  214.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[40]   A. M. Shiller , L. Mao , Dissolved vanadium on the Louisiana Shelf: effect of oxygen depletion. Cont. Shelf Res. 1999 , 19,  1007.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[41]   D. R. Nicholas , S. Ramamoorthy , V. Palace , S. Spring , J. N. Moore , R. F. Rosenzweig , Biological transformations of arsenic in circumneutral freshwater sediments. Biodegradation 2003 , 14,  123.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[42]   B. E. Erickson , G. R. Helz , Molybdenum(VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochim. Cosmochim. Acta 2000 , 64,  1149.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[43]   G. R. Helz , T. P. Vorlicek , M. D. Kahn , Molybdenum scavenging by iron monosulfide. Environ. Sci. Technol. 2004 , 38,  4263.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[44]   D. Wallschläger , C. J. Stadey , Determination of (oxy)thioarsenates in sulphidic waters. Anal. Chem. 2007 , 79,  3873.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[45]   M. Motelica-Heino , C. Naylor , H. Zhang , W. Davison , Simultaneous release of metals and sulfide in lacustrine sediment. Environ. Sci. Technol. 2003 , 37,  4374.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[46]   N. Tribovillard , T. J. Alego , T. Lyons , A. Riboulleau , Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 2006 , 232,  12.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1




Accessory materials

Details of drying procedure and settings for the TRA software: this material is available free of charge via the Internet at http://www.publish.csiro.au.