Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Evaluation of affinity constants of Cu, Cd, Ca and H for active soil surfaces for a solid phase-controlled soil ligand model

Julien Rachou A and Sébastien Sauvé A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Université de Montréal, PO Box 6128 Downtown, Montréal, QC, H3C 3J7, Canada.

B Corresponding author. Emial: sebastien.sauve@umontreal.ca

Environmental Chemistry 5(2) 150-160 https://doi.org/10.1071/EN07093
Submitted: 8 December 2007  Accepted: 4 March 2008   Published: 17 April 2008

Environmental context. The speciation of metals in soils is controlled by the equilibrium between the solid and aqueous phases and by several parameters such as pH and total metal concentrations. The integration of affinity constants between several cations and active soil surfaces of different soils in the chemical equilibrium modelling software MINEQL+ allows a good evaluation of the chemical speciation of the metals.

Abstract. A new approach, derived from the concept of the biotic ligand model, was used for the determination of the affinity constants of Ca, Cu, Cd and H to the active surfaces of different kinds of soils. This approach allowed us to obtain consistent data and to integrate these values in the chemical equilibrium modelling software MINEQL+ and eventually into a solid phase-controlled soil ligand model. This could then very easily be transformed into a terrestrial biotic ligand model by adding constants for biological components. We obtained the chemical speciation of the metals of interest by integrating the initial characteristics of the soil (pH; cation exchange capacity, CEC; total metal concentrations in soil extracts; ionic strength; and CO2 pressure). Comparison of the predicted and measured values of free Cu2+ is excellent using soil-specific affinity constants as well as average values. The average affinity constants between the active soil surfaces (S) and the target cations are log KCa–S = –0.84 (±0.01), log KCu–S = 5.3 (±0.1), log KCd–S = 4.4 (±0.2) and log KH–S = 4.1 (±0.2). External soils have been used to validate the conceptual model and the results show a very good correlation between the predicted and the measured free Cu (pCu) except for an acidic soil (pH < 5.2), highlighting the importance of integrating Al into the model.

Additional keywords: contaminated soils, soil chemistry modelling, terrestrial biotic ligand model, TBLM.


Acknowledgements

The authors gratefully acknowledge the support of the Natural Sciences and Engineering Research Council Metals in the Human Environment (NSERC-MITHE) research network. A complete list of sponsors is available at www.mithe-rn.org.


References


[1]   A. Y. Renoux , S. Rocheleau , M. Sarrazin , G. I. Sunahara , J. F. Blais , Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms. Environ. Pollut. 2007 , 145,  41.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[2]   F. Degryse , E. Smolders , R. Merckx , Labile Cd complexes increase Cd availability to plants. Environ. Sci. Technol. 2006 , 40,  830.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[3]   J. I. Lorenzo , O. Nieto , R. Beiras , Effect of humic acids on speciation and toxicity of copper to Paracentrotus lividus larvae in seawater. Aquat. Toxicol. 2002 , 58,  27.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[4]   G. J. Nierop , B. Jansen , J. A. Vrugt , J. M. Verstraten , Copper complexation by dissolved organic matter and uncertainty assessment of their stability constants. Chemosphere 2002 , 49,  1191.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[5]   H. Ernstberger , W. Davison , H. Zhang , A. Tye , S. Young , Measurement and dynamic modeling of trace metal mobilization in soils using DGT and DIFS. Environ. Sci. Technol. 2002 , 36,  349.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[6]   H. Ernstberger , H. Zhang , A. Tye , S. Young , W. Davison , Desorption kinetics of Cd, Zn, and Ni measured in soils by DGT. Environ. Sci. Technol. 2005 , 39,  1591.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[7]   F. Degryse , E. Smolders , I. Oliver , H. Zhang , Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils. Environ. Sci. Technol. 2003 , 37,  3958.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[8]   J. Rachou , S. Sauvé , W. H. Hendershot , Effects of pH on fluxes of cadmium in soils measured by using diffusive gradients in thin films. Commun. Soil Sci. Plant Anal. 2004 , 35,  2655.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   J. Rachou , W. H. Hendershot , S. Sauvé , Diffusive gradients in thin films (DGT) – induced fluxes of cadmium in soils: effects of organic matter. Commun. Soil Sci. Plant Anal. 2007 , 38,  1619.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   H. Zhang , W. Davison , A. M. Tye , N. M. J. Crout , S. D. Young , Kinetics of zinc and cadmium release in freshly contaminated soils. Environ. Toxicol. Chem. 2006 , 25,  664.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[11]   W. Li , H. Zhao , P. R. Teasdale , R. John , F. Wang , Metal speciation measurement by diffusive gradients in thin films technique with different binding phases. Anal. Chim. Acta 2005 , 533,  193.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   A. Avdeef , J. Zabronsky , H. H. Stuting , Calibration of copper ion selective electrode response to Pcu-19. Anal. Chem. 1983 , 55,  298.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   S. E. Cabaniss , M. S. Shuman , Combined ion selective electrode and fluorescence quenching detection for copper–dissolved organic matter titrations. Anal. Chem. 1986 , 58,  398.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   J. Gulens , Assessment of the research on the preparation, response and application of solid-state copper ion-selective electrodes. Ion-Sel. Electrode R. 1987 , 9,  127.
         open url image1

[15]   S. Sauvé , M. B. McBride , W. H. Hendershot , Ion-selective electrode measurements of copper(II) activity in contaminated soils. Arch. Environ. Contam. Toxicol. 1995 , 29,  373.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   S. Sauvé , M. B. McBride , W. A. Norvell , W. H. Hendershot , Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water Air Soil Pollut. 1997 , 100,  133.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   E. M. Logan , I. D. Pulford , G. T. Cook , A. B. MacKenzie , Complexation of Cu2+ and Pb2+ by peat and humic acid. Eur. J. Soil Sci. 1997 , 48,  685.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   A. T. Lombardi , T. M. R. Hidalgo , A. A. H. Vieira , Copper complexing properties of dissolved organic materials exuded by the freshwater microalgae Scenedesmus acuminatus (Chlorophyceae). Chemosphere 2005 , 60,  453.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[19]   J. Rachou , C. Gagnon , S. Sauvé , Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices. Environ. Chem. 2007 , 4,  90.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   E. P. Achterberg , C. Braungardt , Stripping voltammetry for the determination of trace metal speciation and in-situ measurements of trace metal distributions in marine waters. Anal. Chim. Acta 1999 , 400,  381.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   H. P. van Leeuwen , S. Jansen , Dynamic aspects of metal speciation by competitive ligand exchange-adsorptive stripping voltammetry (CLE-AdSV). J. Electroanal. Chem. 2005 , 579,  337.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   K. N. Buck , K. W. Bruland , Copper speciation in San Francisco Bay: a novel approach using multiple analytical windows. Mar. Chem. 2005 , 96,  185.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   S. Meylan , N. Odzak , R. Behra , L. Sigg , Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models. Anal. Chim. Acta 2004 , 510,  91.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   N. Serrano , J. M. Diaz-Cruz , C. Arino , M. Esteban , Comparison of constant-current stripping chronopotentiometry and anodic stripping voltammetry in metal speciation studies using mercury drop and film electrodes. J. Electroanal. Chem. 2003 , 560,  105.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   C. R. Janssen , D. G. Heijerick , K. A. C. De Schamphelaere , H. E. Allen , Environmental risk assessment of metals: tools for incorporating bioavailability. Environ. Int. 2003 , 28,  793.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[26]   Sauvé S. , Parker D. R. , Chemical Speciation of Trace Elements in Soil Solution, in Chemical Processes in Soils 2005, pp. 655–688. (Soil Science Society of America: Madison, WI).

[27]   N. Semerci , F. Cecen , Importance of cadmium speciation in nitrification inhibition. J. Hazard. Mater. 2007 , 147,  503.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[28]   J. W. Guthrie , N. M. Hassan , M. S. A. Salam , I. I. Fasfous , C. A. Murimboh , C. L. Murimboh , C. L. Chakrabarti , D. C. Grégoire , Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI. Anal. Chim. Acta 2005 , 528,  205.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   B. Cloutier-Hurteau , S. Sauvé , F. Courchesne , Comparing WHAM 6 and MINEQL+ 4.5 for the chemical speciation of Cu2+ in the rhizosphere of forest soils. Environ. Sci. Technol. 2007 , 41,  8104.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[30]   C. A. M. van Gestel , G. Hoogerwerf , Influence of soil pH on the toxicity of aluminium for Eisenia andrei (Oligochaeta: Lumbricidae) in an artificial soil substrate. Pedobiologia 2001 , 45,  385.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   C. Rensing , R. M. Maier , Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicol. Environ. Saf. 2003 , 56,  140.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[32]   D. J. Walker , R. Clemente , M. P. Bernal , Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 2004 , 57,  215.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[33]   J. D. MacDonald , W. H. Hendershot , Modelling trace metal partitioning in forest floors of northern soils near metal smelters. Environ. Pollut. 2006 , 143,  228.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[34]   Y. Ge , D. MacDonald , S. Sauvé , W. Hendershot , Modeling of Cd and Pb speciation in soil solutions by WinHumicV and NICA-Donnan model. Environ. Model. Softw. 2005 , 20,  353.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   S. Goldberg , S. J. Traina , Chemical modeling of anion competition on oxides using the constant capacitance model mixed-ligand approach. Soil Sci. Soc. Am. J. 1987 , 51,  929.
         open url image1

[36]   X. Wen , Q. Du , H. Tang , Surface complexation model for the heavy metal adsorption on natural sediment. Environ. Sci. Technol. 1998 , 32,  870.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   J. Choi , Geochemical modeling of cadmium sorption to soil as a function of soil properties. Chemosphere 2006 , 63,  1824.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[38]   J. P. Gustafsson , Modeling the acid-base properties and metal complexation of humic substances with the Stockholm humic model. J. Colloid Interface Sci. 2001 , 244,  102.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[39]   M. F. Benedetti , W. H. Van Riemsdijk , L. K. Koopal , Humic substances considered as a heterogeneous Donnan gel phase. Environ. Sci. Technol. 1996 , 30,  1805.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[40]   P. R. Paquin , R. C. Santore , K. B. Wu , C. D. Kavvadas , D. M. Di Toro , The biotic ligand model: a model of the acute toxicity of metals to aquatic life. Environ. Sci. Policy 2000 , 3,  175.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[41]   W. R. Arnold , R. C. Santore , J. S. Cotsifas , Predicting copper toxicity in estuarine and marine waters using the biotic ligand model. Mar. Pollut. Bull. 2005 , 50,  1634.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[42]   P. R. Paquin , J. W. Gorsuch , S. Apte , G. E. Batley , K. C. Bowles , P. G. C. Campbell , C. G. Delos , D. M. Di Toro , R. L. Dwyer , F. Galvez , R. W. Gensemer , G. G. Goss , C. Hogstrand , C. R. Janssen , J. C. McGeer , R. B. Naddy , R. C. Playle , R. C. Santore , U. Schneider , W. A. Stubblefield , C. M. Wood , K. B. Wu , The biotic ligand model: a historical overview. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 2002 , 133,  3.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[43]   P. M. C. Antunes , E. J. Berkelaar , D. Boyle , B. A. Hale , W. Hendershot , A. Voigt , The biotic ligand model for plants and metals: technical challenges for field application. Environ. Toxicol. Chem. 2006 , 25,  875.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[44]   K. A. C. De Schamphelaere , C. R. Janssen , A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environ. Sci. Technol. 2002 , 36,  48.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[45]   S. Thakali , H. E. Allen , D. M. Di Toro , A. A. Ponizovsky , C. P. Rooney , F. J. Zhao , S. P. McGrath , A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environ. Sci. Technol. 2006 , 40,  7085.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[46]   S. Thakali , H. E. Allen , D. M. Di Toro , A. A. Ponizovsky , C. P. Rooney , F. J. Zhao , S. P. McGrath , P. Criel , H. Van Eeckhout , C. R. Janssen , K. Oorts , E. Smolders , Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. Environ. Sci. Technol. 2006 , 40,  7094.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[47]   M. Koster , A. de Groot , M. Vijver , W. Peijnenburg , Copper in the terrestrial environment: verification of a laboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicity observed in field soils. Soil Biol. Biochem. 2006 , 38,  1788.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[48]   P. M. C. Antunes , B. A. Hale , A. C. Ryan , Toxicity versus accumulation for barley plants exposed to copper in the presence of metal buffers: progress towards development of a terrestrial biotic ligand model. Environ. Toxicol. Chem. 2007 , 26,  2282.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[49]   N. T. T. M. Steenbergen , F. Iaccino , M. de Winkel , L. Reijnders , W. J. G. M. Peijnenburg , Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa. Environ. Sci. Technol. 2005 , 39,  5694.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[50]   D. G. Heijerick , K. A. C. De Schamphelaere , C. R. Janssen , Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations. Comp. Biochem. Phys. C 2002 , 133,  207.
         open url image1

[51]   K. A. C. De Schamphelaere , D. G. Heijerick , C. R. Janssen , Refinement and field validation of a Biotic Ligand Model predicting acute copper toxicity to Daphnia magna. Comp. Biochem. Phys. C 2002 , 133,  243.
         open url image1

[52]   R. C. Santore , R. Mathew , P. R. Paquin , D. Di Toro , Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna. Comp. Biochem. Phys. C 2002 , 133,  271.
         open url image1

[53]   W. D. Schecher , D. C. McAvoy , MINEQL+: a software environment for chemical equilibrium modeling. Comput. Environ. Urban Syst. 1992 , 16,  65.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[54]   Smith R. M. , Martell A. E. , Critical Stability Constants 1982, Vol 5, Supplement 1 (Plenum Press: New York).

[55]   L. Weng , E. J. M. Temminghoff , W. H. Van Riemsdijk , Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ. Sci. Technol. 2001 , 35,  4436.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[56]   L. A. Miller , K. W. Bruland , Competitive equilibration techniques for determining transition metal speciation in natural waters: evaluation using model data. Anal. Chim. Acta 1997 , 343,  161.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[57]   S. Sauvé , W. A. Norvell , M. McBride , W. Hendershot , Speciation and complexation of cadmium in extracted soil solutions. Environ. Sci. Technol. 2000 , 34,  291.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[58]   Hendershot W. H. , Lalande H. , Ion exchange and exchangeable cations, in Soil Sampling and Methods of Analysis (Ed. M. R. Carter) 1993, pp. 167–176 (Lewis Publishers: Boca Raton, FL).

[59]   Tiessen H. , Total and organic carbon, in Soil Sampling and Methods of Analysis, Lewis (Ed. M. R. Carter) 1993, pp. 187–199 (Lewis Publishers: Boca Raton, FL).

[60]   vanLoon G. W. , Sterckeman T. , Environmental Chemistry – A Global Perspective 2000 (Oxford University Press: New York).

[61]   Legendre P. , Legendre L. , Numerical Ecology, 2nd English edn 1998 (Elsevier Science & Technology: Amsterdam).

[62]   Y. Ge , P. Murray , W. H. Hendershot , Trace metal speciation and bioavailability in urban soils. Environ. Pollut. 2000 , 107,  137.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[63]   S. Sauvé , A. Dumestre , M. McBride , W. Hendershot , Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+. Environ. Toxicol. Chem. 1998 , 17,  1481.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[64]   R. C. Playle , Using multiple metal-gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results. Aquat. Toxicol. 2004 , 67,  359.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[65]   L. Weng , E. J. M. Temminghoff , S. Lofts , E. Tipping , W. H. Van Riemsdijk , Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol. 2002 , 36,  4804.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1