Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE (Open Access)

Host–pathogen interactions in relation to management of light leaf spot disease (caused by Pyrenopeziza brassicae) on Brassica species

Chinthani S. Karandeni Dewage A B , Coretta A. Klöppel A , Henrik U. Stotz A and Bruce D. L. Fitt A
+ Author Affiliations
- Author Affiliations

A School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK.

B Corresponding author. Email: c.s.karandeni-dewage@herts.ac.uk

Crop and Pasture Science 69(1) 9-19 https://doi.org/10.1071/CP16445
Submitted: 2 December 2016  Accepted: 8 March 2017   Published: 26 April 2017

Journal Compilation © CSIRO Publishing 2018 Open Access CC BY

Abstract

Light leaf spot, caused by Pyrenopeziza brassicae, is the most damaging disease problem in oilseed rape (Brassica napus) in the United Kingdom. According to recent survey data, the severity of epidemics has increased progressively across the UK, with yield losses of up to £160M per annum in England and more severe epidemics in Scotland. Light leaf spot is a polycyclic disease, with primary inoculum consisting of airborne ascospores produced on diseased debris from the previous cropping season. Splash-dispersed conidia produced on diseased leaves are the main component of the secondary inoculum. Pyrenopeziza brassicae is also able to infect and cause considerable yield losses on vegetable brassicas, especially Brussels sprouts. There may be spread of light leaf spot among different Brassica species. Since they have a wide host range and frequent occurrence of sexual reproduction, P. brassicae populations are likely to have considerable genetic diversity, and evidence suggests population variations between different geographic regions, which need further study. Available disease-management tools are not sufficient to provide adequate control of the disease. There is a need to identify new sources of resistance, which can be integrated with fungicide applications to achieve sustainable management of light leaf spot. Several major resistance genes and quantitative trait loci have been identified in previous studies, but rapid improvements in the understanding of molecular mechanisms underpinning B. napusP. brassicae interactions can be expected through exploitation of novel genetic and genomic information for brassicas and extracellular fungal pathogens.

Additional keywords: crop losses, extracellular pathogens, pathogen population variation, QTL mapping, R-gene-mediated resistance.


References

AHDB Cereals & Oilseeds (2016) AHDB Recommended Lists for Cereals and Oilseeds (2016/17). Agriculture and Horticulture Development Board. Available at: https://cereals.ahdb.org.uk/varieties/ahdb-recommended-lists/rl-archive-2015-16.aspx (accessed 30 September 2016)

Ashby AM (1997) A molecular view through the looking glass: the Pyrenopeziza brassicaeBrassica interaction. Advances in Botanical Research 24, 31–70.
A molecular view through the looking glass: the Pyrenopeziza brassicaeBrassica interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFenurg%3D&md5=84392bf20fb53104e011c395afcad5bcCAS |

Barrett LG, Thrall PH, Burdon JJ, Linde CC (2008) Life history determines genetic structure and evolutionary potential of host–parasite interactions. Trends in Ecology & Evolution 23, 678–685.
Life history determines genetic structure and evolutionary potential of host–parasite interactions.Crossref | GoogleScholarGoogle Scholar |

Batish S, Hunter A, Ashby AM, Johnstone K (2003) Purification and biochemical characterisation of Psp1, an extracellular protease produced by the oilseed rape pathogen Pyrenopeziza brassicae. Physiological and Molecular Plant Pathology 62, 13–20.
Purification and biochemical characterisation of Psp1, an extracellular protease produced by the oilseed rape pathogen Pyrenopeziza brassicae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1yjs70%3D&md5=1fa1d81b62dbbd574cbd3ef12da85d81CAS |

Blein M, Levrel A, Lemoine J, Gautier V, Chevalier M, Barloy D (2009) Oculimacula yallundae lifestyle revisited: relationships between the timing of eyespot symptom appearance, the development of the pathogen and the responses of infected partially resistant wheat plants. Plant Pathology 58, 1–11.
Oculimacula yallundae lifestyle revisited: relationships between the timing of eyespot symptom appearance, the development of the pathogen and the responses of infected partially resistant wheat plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVWgtrs%3D&md5=1c0919458390eef5ece80d02ad4b8735CAS |

Boys EF (2009) Resistance to Pyrenopeziza brassicae (light leaf spot) in Brassica napus (oilseed rape). PhD Thesis, University of Nottingham, UK.

Boys EF, Roques SE, Ashby AM, Evans N, Latunde-Dada AO, Thomas JE, West JS, Fitt BDL (2007) Resistance to infection by stealth: Brassica napus (winter oilseed rape) and Pyrenopeziza brassicae (light leaf spot). European Journal of Plant Pathology 118, 307–321.
Resistance to infection by stealth: Brassica napus (winter oilseed rape) and Pyrenopeziza brassicae (light leaf spot).Crossref | GoogleScholarGoogle Scholar |

Boys EF, Roques SE, West JS, Werner CP, King GJ, Dyer PS, Fitt BDL (2012) Effects of R gene-mediated resistance in Brassica napus (oilseed rape) on asexual and sexual sporulation of Pyrenopeziza brassicae (light leaf spot). Plant Pathology 61, 543–554.
Effects of R gene-mediated resistance in Brassica napus (oilseed rape) on asexual and sexual sporulation of Pyrenopeziza brassicae (light leaf spot).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVeit7vO&md5=c35e692445ce2f4f9bac9d8a9dd339beCAS |

Bradburne R, Majer D, Magreth R, Werner C, Lewis B, Mithen R (1999) Winter oilseed rape with high levels of resistance to Pyrenopeziza brassicae derived from wild Brassica species. Plant Pathology 48, 550–558.
Winter oilseed rape with high levels of resistance to Pyrenopeziza brassicae derived from wild Brassica species.Crossref | GoogleScholarGoogle Scholar |

Brun H, Chèvre AM, Fitt BDL, Powers S, Besnard AL, Ermel M, Huteau V, Marquer B, Eber F, Renard M (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytologist 185, 285–299.
Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus.Crossref | GoogleScholarGoogle Scholar |

Brunner PC, Torriani SFF, Croll D, Stukenbrock EH, McDonald BA (2013) Coevolution and life cycle specialization of plant cell wall degrading enzymes in a hemibiotrophic pathogen. Molecular Biology and Evolution 30, 1337–1347.
Coevolution and life cycle specialization of plant cell wall degrading enzymes in a hemibiotrophic pathogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVOjs70%3D&md5=04bc122e68722dae408f038aac10cf0fCAS |

Burdon JJ, Zhan J, Barrett LG, Papaïx J, Thrall PH (2016) Addressing the challenges of pathogen evolution on the world’s arable crops. Phytopathology 106, 1117–1127.
Addressing the challenges of pathogen evolution on the world’s arable crops.Crossref | GoogleScholarGoogle Scholar |

Carter HE, Cools HJ, West JS, Shaw MW, Fraaije BA (2013) Detection and molecular characterisation of Pyrenopeziza brassicae isolates resistant to methyl benzimidazole carbamates. Pest Management Science 69, 1040–1048.
Detection and molecular characterisation of Pyrenopeziza brassicae isolates resistant to methyl benzimidazole carbamates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKrtLvF&md5=b6e7b891844dcc314156acfc8a8c3262CAS |

Carter HE, Fraaije BA, West JS, Kelly SL, Mehl A, Shaw MW, Cools HJ (2014) Alterations in the predicted regulatory and coding regions of the sterol 14alpha-demethylase gene (CYP51) confer decreased azole sensitivity in the oilseed rape pathogen Pyrenopeziza brassicae. Molecular Plant Pathology 15, 513–522.
Alterations in the predicted regulatory and coding regions of the sterol 14alpha-demethylase gene (CYP51) confer decreased azole sensitivity in the oilseed rape pathogen Pyrenopeziza brassicae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslCksr4%3D&md5=4df7f21b02a027aab0c7430d10ec49a7CAS |

Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953.
Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlOmsr%2FK&md5=1a8efabc0ad3089b351cba8f65b3c609CAS |

Cheah LH, Hartill WFT, Corbin JB (1980) First report of the natural occurrence of Pyrenopeziza brassicae Sutton et Rawlinson, the apothecial state of Cylindrosporium concentricum Greville, in brassica crops in New Zealand. New Zealand Journal of Botany 18, 197–202.
First report of the natural occurrence of Pyrenopeziza brassicae Sutton et Rawlinson, the apothecial state of Cylindrosporium concentricum Greville, in brassica crops in New Zealand.Crossref | GoogleScholarGoogle Scholar |

Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142, 169–196.
An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVWjs7c%3D&md5=8ca3d8f2a3f02c9901047743dc81f969CAS |

Courtice GRM, Ingram DS (1987) Isolation of auxotrophic mutants of the hemibiotrophic ascomycete pathogen of brassicas, Pyrenopeziza brassicae. Transactions of the British Mycological Society 89, 301–306.
Isolation of auxotrophic mutants of the hemibiotrophic ascomycete pathogen of brassicas, Pyrenopeziza brassicae.Crossref | GoogleScholarGoogle Scholar |

CropMonitor (2016) Survey of commercially grown winter oilseed rape. Department for Environment, Food and Rural Affairs. Available at: www.cropmonitor.co.uk/wosr/surveys/wosr.cfm (accessed 1 August 2016)

Crous PW, Groenewald JZ, Gams W (2003) Eyespot of cereals revisited: ITS phylogeny reveals new species relationships. European Journal of Plant Pathology 109, 841–850.
Eyespot of cereals revisited: ITS phylogeny reveals new species relationships.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotV2jsbw%3D&md5=ea9c991ed571130f6d7cf56ec4ab498eCAS |

Davies KA, De Lorono I, Foster SJ, Li D, Johnstone K, Ashby AM (2000) Evidence for a role of cutinase in pathogenicity of Pyrenopeziza brassicae on brassicas. Physiological and Molecular Plant Pathology 57, 63–75.
Evidence for a role of cutinase in pathogenicity of Pyrenopeziza brassicae on brassicas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFWqtbo%3D&md5=4621bd374b71e30768724dd60adde11cCAS |

Defra (2016) Horticulture statistics. Department for Environment, Food and Rural Affairs. Available at: www.gov.uk/government/collections/horticultural-statistics (accessed 22 July 2016)

Evans N, Baierl A, Brain P, Welham SJ, Fitt BDL (2003) Spatial aspects of light leaf spot (Pyrenopeziza brassicae) epidemic development on winter oilseed rape (Brassica napus) in the United Kingdom. Phytopathology 93, 657–665.
Spatial aspects of light leaf spot (Pyrenopeziza brassicae) epidemic development on winter oilseed rape (Brassica napus) in the United Kingdom.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjkt1Gnsg%3D%3D&md5=9279b2b30f9a5d209a5a7b91abe20dfcCAS |

Evans N, Butterworth MH, Baierl A, Semenov MA, West JS, Barnes A, Moran D, Fitt BDL (2010) The impact of climate change on disease constraints on production of oilseed rape. Food Security 2, 143–156.
The impact of climate change on disease constraints on production of oilseed rape.Crossref | GoogleScholarGoogle Scholar |

Figueroa L, Shaw MW, Fitt BDL, McCartney HA, Welham SJ (1994) Effects of previous cropping and fungicide timing on the development of light leaf spot (Pyrenopeziza brassicae), seed yield and quality of winter oilseed rape (Brassica napus). Annals of Applied Biology 124, 221–239.
Effects of previous cropping and fungicide timing on the development of light leaf spot (Pyrenopeziza brassicae), seed yield and quality of winter oilseed rape (Brassica napus).Crossref | GoogleScholarGoogle Scholar |

Figueroa L, Fitt BDL, Shaw MW, McCartney HA, Welham SJ (1995) Effects of temperature on the development of light leaf spot (Pyrenopeziza brassicae) on oilseed rape (Brassica napus). Plant Pathology 44, 51–62.
Effects of temperature on the development of light leaf spot (Pyrenopeziza brassicae) on oilseed rape (Brassica napus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2MzpslGisA%3D%3D&md5=7076cd5ca2628324b6c93c11f4cad95fCAS |

Fitt BDL, Doughty KJ, Gilles T, Gladders P, Steed JM, Su H, Sutherland KG (1998a) Methods for assessment of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) in the UK. Annals of Applied Biology 133, 329–341.
Methods for assessment of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) in the UK.Crossref | GoogleScholarGoogle Scholar |

Fitt BDL, Doughty KJ, Gladders P, Steed JM, Sutherland KG (1998b) Diagnosis of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) in the UK. Annals of Applied Biology 133, 155–166.
Diagnosis of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) in the UK.Crossref | GoogleScholarGoogle Scholar |

Fitt BDL, Fraaije BA, Chandramohan P, Shaw MW (2011) Impacts of changing air composition on severity of arable crop disease epidemics. Plant Pathology 60, 44–53.
Impacts of changing air composition on severity of arable crop disease epidemics.Crossref | GoogleScholarGoogle Scholar |

Gilles T, Evans N, Fitt BDL, Jeger MJ (2000) Epidemiology in relation to methods for forecasting light leaf spot (Pyrenopeziza brassicae) severity on winter oilseed rape (Brassica napus) in the UK. European Journal of Plant Pathology 106, 593–605.
Epidemiology in relation to methods for forecasting light leaf spot (Pyrenopeziza brassicae) severity on winter oilseed rape (Brassica napus) in the UK.Crossref | GoogleScholarGoogle Scholar |

Gilles T, Ashby AM, Fitt BDL, Cole T (2001a) Development of Pyrenopeziza brassicae apothecia on agar and oilseed rape debris. Mycological Research 105, 705–714.
Development of Pyrenopeziza brassicae apothecia on agar and oilseed rape debris.Crossref | GoogleScholarGoogle Scholar |

Gilles T, Fitt BDL, Jeger MJ (2001b) Effects of environmental factors on development of Pyrenopeziza brassicae (light leaf spot) apothecia on oilseed rape debris. Phytopathology 91, 392–398.
Effects of environmental factors on development of Pyrenopeziza brassicae (light leaf spot) apothecia on oilseed rape debris.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjjslGgsw%3D%3D&md5=96660e1c5a94329d9f37e3e77357bcdbCAS |

Gilles T, Fitt BDL, McCartney HA, Papastamati K, Steed JM (2001c) The roles of ascospores and conidia of Pyrenopeziza brassicae in light leaf spot epidemics on winter oilseed rape (Brassica napus) in the UK. Annals of Applied Biology 138, 141–152.
The roles of ascospores and conidia of Pyrenopeziza brassicae in light leaf spot epidemics on winter oilseed rape (Brassica napus) in the UK.Crossref | GoogleScholarGoogle Scholar |

Goodwin SB (2002) The barley scald pathogen Rhynchosporium secalis is closely related to the discomycetes Tapesia and Pyrenopeziza. Mycological Research 106, 645–654.
The barley scald pathogen Rhynchosporium secalis is closely related to the discomycetes Tapesia and Pyrenopeziza.Crossref | GoogleScholarGoogle Scholar |

Haddadi P, Ma L, Wang H, Borhan MH (2016) Genome‐wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings. Molecular Plant Pathology 17, 1196–1210.
Genome‐wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVOit7jK&md5=8faac571dc6baefa2c6bb2cc91738ea0CAS |

Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I (2012) Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nature Biotechnology 30, 798–802.
Associative transcriptomics of traits in the polyploid crop species Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKnurzO&md5=ad2c27d821d34449e5e740584e28006dCAS |

Hatzig SV, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner M-H, Leckband G, Abbadi A, Snowdon RJ (2015) Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Frontiers in Plant Science 6, 221–233.
Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus.Crossref | GoogleScholarGoogle Scholar |

Hickman CJ, Schofield ER, Taylor RE (1955) Light leaf spot of Brassicae. Plant Pathology 4, 129–131.
Light leaf spot of Brassicae.Crossref | GoogleScholarGoogle Scholar |

Ilott TW, Ingram DS, Rawlinson CJ (1984) Heterothallism in Pyrenopeziza brassicae, cause of light leaf spot of brassicas. Transactions of the British Mycological Society 82, 477–483.
Heterothallism in Pyrenopeziza brassicae, cause of light leaf spot of brassicas.Crossref | GoogleScholarGoogle Scholar |

Jones JDG, Dangl JL (2006) The plant immune system. Nature 444, 323–329.
The plant immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SgtbzO&md5=9bc59a3c84e2840d8f9be0a28b2c40afCAS |

Joshi RK, Megha S, Rahman MH, Basu U, Kav NN (2016) A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Gene 590, 57–67.
A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVCktLvL&md5=933bb3abcadfaceefd81ee7644461d87CAS |

Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett RM, Bryan GJ (2013) Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB‐LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. The Plant Journal 76, 530–544.
Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB‐LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WntLfN&md5=645db0cedee52e949c534c26d8e4a16dCAS |

Karolewski Z (1999) The occurrence of light leaf spot on winter oilseed rape in Western Poland in 1991–1996 and the characteristics of Pyrenopeziza brassicae isolates. Phytopatologia Polonica 18, 113–121.

Karolewski Z (2010) Development of light leaf spot (Pyrenopeziza brassicae) on brassicas. Phytopathologia 55, 13–20.

Karolewski Z, Fitt BDL, Latunde-Dada AO, Foster SJ, Todd AD, Downes K, Evans N (2006) Visual and PCR assessment of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) cultivars. Plant Pathology 55, 387–400.
Visual and PCR assessment of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlWqsLc%3D&md5=e8d1f7c557ca39c23f374086fb5f9397CAS |

Karolewski Z, Kaczmarek J, Jedryczka M, Cools HJ, Fraaije BA, Lucas JA, Latunde-Dada AO (2012) Detection and quantification of airborne inoculum of Pyrenopeziza brassicae in Polish and UK winter oilseed rape crops by real-time PCR assays. Grana 51, 270–279.
Detection and quantification of airborne inoculum of Pyrenopeziza brassicae in Polish and UK winter oilseed rape crops by real-time PCR assays.Crossref | GoogleScholarGoogle Scholar |

Kirsten S, Navarro-Quezada A, Penselin D, Wenzel C, Matern A, Leitner A, Baum T, Seiffert U, Knogge W (2012) Necrosis-inducing proteins of Rhynchosporium commune, effectors in quantitative disease resistance. Molecular Plant-Microbe Interactions 25, 1314–1325.
Necrosis-inducing proteins of Rhynchosporium commune, effectors in quantitative disease resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSmu7nJ&md5=4d7ceb113781e39ef41e4d44ecc3bddbCAS |

Klosterman S, Rollins J, Sudarshana M, Vinatzer B (2016) Disease management in the genomics era—summaries of focus issue papers. Phytopathology 106, 1068–1070.
Disease management in the genomics era—summaries of focus issue papers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2s3mvFSltA%3D%3D&md5=2ac85eb8265c8f4f96a02b768b75bf23CAS |

Koike S, Gladders P, Paulus A (2007) ‘Vegetable diseases: a color handbook.’ (Manson Publishing Limited: London)

Lacey ME, Rawlinson CJ, McCartney HA (1987) First record of the natural occurrence in England of the teleomorph of Pyrenopeziza brassicae on oilseed rape. Transactions of the British Mycological Society 89, 135–140.
First record of the natural occurrence in England of the teleomorph of Pyrenopeziza brassicae on oilseed rape.Crossref | GoogleScholarGoogle Scholar |

Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLm1. New Phytologist 197, 595–605.
The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLm1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVynsrrN&md5=a88938393eb0faae545ee4c32b8e7133CAS |

Larkan NJ, Ma L, Borhan MH (2015) The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnology Journal 13, 983–992.
The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtl2murjM&md5=74eebfc0f5ce202b9e254b8c3a71f008CAS |

Laugé R, De Wit PJGM (1998) Fungal avirulence genes: structure and possible functions. Fungal Genetics and Biology 24, 285–297.
Fungal avirulence genes: structure and possible functions.Crossref | GoogleScholarGoogle Scholar |

Li D, Ashby AM, Johnstone K (2003) Molecular evidence that the extracellular cutinase Pbc1 is required for pathogenicity of Pyrenopeziza brassicae on oilseed rape. Molecular Plant-Microbe Interactions 16, 545–552.
Molecular evidence that the extracellular cutinase Pbc1 is required for pathogenicity of Pyrenopeziza brassicae on oilseed rape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOqsrg%3D&md5=253588364ec56ba6d2be9430bae0a4b1CAS |

Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G (2014) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Research 21, 355–367.
Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar |

Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang TJ, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park BS, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee TH, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications 5, 3930
The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVemsbg%3D&md5=c6c1b96236bf991bedcb4aa24f5813f3CAS |

Lowe RGT, Cassin A, Grandaubert J, Clark BL, Van de Wouw AP, Rouxel T, Howlett BJ (2014) Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species. PLoS One 9, e103098
Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species.Crossref | GoogleScholarGoogle Scholar |

Maddock SE, Ingram DS (1981) Studies of survival and longevity of the light leaf spot pathogen of brassicas, Pyrenopeziza brassicae. Transactions of the British Mycological Society 77, 153–159.
Studies of survival and longevity of the light leaf spot pathogen of brassicas, Pyrenopeziza brassicae.Crossref | GoogleScholarGoogle Scholar |

Maddock SE, Ingram DS, Gilligan CA (1981) Resistance of cultivated brassicas to Pyrenopeziza brassicae. Transactions of the British Mycological Society 76, 371–382.
Resistance of cultivated brassicas to Pyrenopeziza brassicae.Crossref | GoogleScholarGoogle Scholar |

Majer D, Lewis BG, Mithen R (1998) Genetic variation among field isolates of Pyrenopeziza brassicae. Plant Pathology 47, 22–28.
Genetic variation among field isolates of Pyrenopeziza brassicae.Crossref | GoogleScholarGoogle Scholar |

McCartney HA, Lacey ME (1990) The production and release of ascospores of Pyrenopeziza brassicae on oilseed rape. Plant Pathology 39, 17–32.
The production and release of ascospores of Pyrenopeziza brassicae on oilseed rape.Crossref | GoogleScholarGoogle Scholar |

McDonald BA (2015) How can research on pathogen population biology suggest disease management strategies? The example of barley scald (Rhynchosporium commune). Plant Pathology 64, 1005–1013.
How can research on pathogen population biology suggest disease management strategies? The example of barley scald (Rhynchosporium commune).Crossref | GoogleScholarGoogle Scholar |

McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology 40, 349–379.
Pathogen population genetics, evolutionary potential, and durable resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1Cltbg%3D&md5=23ccd90e8bb1f92b3aa9067a51063c92CAS |

Mycobank (undated) Pyrenopeziza brassicae. International Mycological Association. Available at: www.mycobank.org/name/Pyrenopeziza%20brassicae&Lang=Eng (accessed 6 February 2017).

Oerke EC (2006) Crop losses to pests. The Journal of Agricultural Science 144, 31–43.
Crop losses to pests.Crossref | GoogleScholarGoogle Scholar |

Oxley SJP, Walters DR (2012) Control of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) with resistance elicitors. Crop Protection 40, 59–62.
Control of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) with resistance elicitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GmsrvE&md5=644e6872ee5feef8db575520b271abdfCAS |

Penselin D, Münsterkötter M, Kirsten S, Felder M, Taudien S, Platzer M, Ashelford K, Paskiewicz KH, Harrison RJ, Hughes DJ, Wolf T, Shelest E, Graap J, Hoffmann J, Wenzel C, Wöltje N, King KM, Fitt BDL, Güldener U, Avrova A, Knogge W (2016) Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of Rhynchosporium species on grasses. BMC Genomics 17, 953
Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of Rhynchosporium species on grasses.Crossref | GoogleScholarGoogle Scholar |

Pilet ML, Delourme R, Foisset N, Renard M (1998) Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theoretical and Applied Genetics 97, 398–406.
Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVyku7s%3D&md5=83e791248574ebd8817e8d1cdc08b837CAS |

Pöggeler S (2001) Mating-type genes for classical strain improvements of ascomycetes. Applied Microbiology and Biotechnology 56, 589–601.
Mating-type genes for classical strain improvements of ascomycetes.Crossref | GoogleScholarGoogle Scholar |

Rawlinson CJ, Muthyalu G, Turner RH (1978a) Effect of herbicides on epicuticular wax of winter oilseed rape (Brassica napus) and infection by Pyrenopeziza brassicae. Transactions of the British Mycological Society 71, 441–451.
Effect of herbicides on epicuticular wax of winter oilseed rape (Brassica napus) and infection by Pyrenopeziza brassicae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtFKgt7c%3D&md5=ac592503328516bf7b239d6580735d37CAS |

Rawlinson CJ, Sutton BC, Muthyalu G (1978b) Taxonomy and biology of Pyrenopeziza brassicae sp. nov. (Cylindrosporium concentricum), a pathogen of winter oilseed rape (Brassica napus ssp. oleifera). Transactions of the British Mycological Society 71, 425–439.
Taxonomy and biology of Pyrenopeziza brassicae sp. nov. (Cylindrosporium concentricum), a pathogen of winter oilseed rape (Brassica napus ssp. oleifera).Crossref | GoogleScholarGoogle Scholar |

Rohe M, Gierlich A, Hermann H, Hahn M, Schmidt B, Rosahl S, Knogge W (1995) The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype. The EMBO Journal 14, 4168–4177.

Rothamsted Research (2016) Regional light leaf spot risk forecast 2016/17 season. Rothamsted Research, UK. Available at: www.rothamsted.ac.uk/light-leaf-spot-forecast/regional-light-leaf-spot-risk-forecast (accessed 8 September 2016).

Savary S, Ficke A, Aubertot J-N, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Security 4, 519–537.
Crop losses due to diseases and their implications for global food production losses and food security.Crossref | GoogleScholarGoogle Scholar |

Schmutzer T, Samans B, Dyrszka E, Ulpinnis C, Weise S, Stengel D, Colmsee C, Lespinasse D, Micic Z, Abel S, Duchscherer P, Breuer F, Abbadi A, Leckband G, Snowdon R, Scholz U (2015) Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plant Brassica napus. Scientific Data 2, 150072
Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plant Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVWrtb3J&md5=53eb8b77286ea849836dfe16465e65cfCAS |

Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM (2015) Disease resistance gene analogs (RGAs) in plants. International Journal of Molecular Sciences 16, 19248–19290.
Disease resistance gene analogs (RGAs) in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xks12ns7k%3D&md5=438a34ed7c9f97d2ead42b6bc185fe68CAS |

Siebold M, von Tiedemann A (2012) Potential effects of global warming on oilseed rape pathogens in Northern Germany. Fungal Ecology 5, 62–72.
Potential effects of global warming on oilseed rape pathogens in Northern Germany.Crossref | GoogleScholarGoogle Scholar |

Simons AJ, Skidmore DI (1988) Race-specific resistance to light leaf spot in Brassica oleracea. Transactions of the British Mycological Society 90, 431–435.
Race-specific resistance to light leaf spot in Brassica oleracea.Crossref | GoogleScholarGoogle Scholar |

Singh G, Ashby AM (1998) Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT 1-2 locus encoding a putative metallothionein-like protein. Molecular Microbiology 30, 799–806.
Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT 1-2 locus encoding a putative metallothionein-like protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVejs74%3D&md5=ce6154cee6cd9df30dd090e1100325beCAS |

Singh G, Ashby AM (1999) Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT 1-2 locus encoding a putative metallothionein-like protein. Molecular Microbiology 32, 1115
Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT 1-2 locus encoding a putative metallothionein-like protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVSmsb4%3D&md5=c6b2ec338dd03e5f3216662a42902c03CAS |

Snowdon RJ, Iniguez Luy FL (2012) Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breeding 131, 351–360.
Potential to improve oilseed rape and canola breeding in the genomics era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Sjtr7N&md5=78713d00cd999d27f54e288948e5c015CAS |

Staunton W, Kavanagh T (1966) Natural occurrence of the perfect stage of Gloeosporium concentricum (Grev.) Berk. and Br. Irish Journal of Agricultural Research 5, 140–141.

Stotz HU, Mitrousia GK, de Wit PJGM, Fitt BDL (2014) Effector-triggered defence against apoplastic fungal pathogens. Trends in Plant Science 19, 491–500.
Effector-triggered defence against apoplastic fungal pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXoslyisbg%3D&md5=aee9214499d5f6366d3f94651164ea8dCAS |

Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annual Review of Phytopathology 43, 83–116.
Plant disease: a threat to global food security.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOksr3O&md5=b627ac596f60072e89d281179ed05d50CAS |

Teng PS, Shane WW, MacKenzie DR (1984) Crop losses due to plant pathogens. Critical Reviews in Plant Sciences 2, 21–47.
Crop losses due to plant pathogens.Crossref | GoogleScholarGoogle Scholar |

Turgeon BG, Yoder O (2000) Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genetics and Biology 31, 1–5.
Proposed nomenclature for mating type genes of filamentous ascomycetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslKlsr0%3D&md5=be56abc645e728366b0514697aa16251CAS |

Vegetables New Zealand (2016) Vegetable Brassica IPM manual: Pests, natural enemies, diseases and disorders of vegetable brassicas in New Zealand. Horticulture New Zealand. Available at: www.vegetablesnz.co.nz/research-and-development/current-research-projects/ (accessed 26 February 2017).

Wafford JD, Gladders P, McPherson GM (1986) The incidence and severity of Brussels sprout diseases and the influence of oilseed rape. Aspects of Applied Biology 12, 1–12.

Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F (2011) The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics 43, 1035–1039.
The genome of the mesopolyploid crop species Brassica rapa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gtrbL&md5=05695d7ea614b936d5dab41e8ae9d47eCAS |

Welham SJ, Turner JA, Gladders P, Fitt BDL, Evans N, Baierl A (2004) Predicting light leaf spot (Pyrenopeziza brassicae) risk on winter oilseed rape (Brassica napus) in England and Wales, using survey, weather and crop information. Plant Pathology 53, 713–724.
Predicting light leaf spot (Pyrenopeziza brassicae) risk on winter oilseed rape (Brassica napus) in England and Wales, using survey, weather and crop information.Crossref | GoogleScholarGoogle Scholar |

West JS, Atkins SD, Emberlin J, Fitt BDL (2008) PCR to predict risk of airborne disease. Trends in Microbiology 16, 380–387.
PCR to predict risk of airborne disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVCqtLw%3D&md5=8881d9a6b595b40ab0ef9a1ed01ccad1CAS |

Woolhouse MEJ, Taylor LH, Haydon DT (2001) Population biology of multihost pathogens. Science 292, 1109–1112.
Population biology of multihost pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1Chtb4%3D&md5=660c9ba928b2c0063a7fbdfa26788437CAS |

Wu J, Zhao Q, Liu S, Shahid M, Lan L, Cai G, Zhang C, Fan C, Wang Y, Zhou Y (2016) Genome-wide association study identifies new loci for resistance to sclerotinia stem rot in Brassica napus. Frontiers in Plant Science 7, 1418
Genome-wide association study identifies new loci for resistance to sclerotinia stem rot in Brassica napus.Crossref | GoogleScholarGoogle Scholar |

Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genetics 48, 1225–1232.
The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVKqt7vN&md5=f78825d6a6c6de201c25d4f9eca36f80CAS |

Yoder OC, Valent B, Chumley F (1986) Genetic nomenclature and practice for plant pathogenic fungi. Phytopathology 76, 383–385.
Genetic nomenclature and practice for plant pathogenic fungi.Crossref | GoogleScholarGoogle Scholar |

Zhan J, Fitt BDL, Pinnschmidt HO, Oxley SJP, Newton AC (2008) Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathology 57, 1–14.