Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
REVIEW

Can genomics assist the phenological adaptation of canola to new and changing environments?

Matthew N. Nelson A B C F , Julianne M. Lilley D , Chris Helliwell D , Candy M. Taylor A , Kadambot H. M. Siddique B , Sheng Chen A B , Harsh Raman E , Jacqueline Batley A B and Wallace A. Cowling B
+ Author Affiliations
- Author Affiliations

A School of Plant Biology, The University of Western Australia, Perth, WA 6009, Australia.

B The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.

C Natural Capital and Plant Health, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK.

D CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia.

E Graham Centre for Agricultural Innovation, NSW DPI, Agricultural Institute, Wagga Wagga, NSW 2650, Australia.

F Corresponding author. Email: m.nelson@kew.org

Crop and Pasture Science 67(4) 284-297 https://doi.org/10.1071/CP15320
Submitted: 18 September 2015  Accepted: 9 December 2015   Published: 29 March 2016

Abstract

Timing of life history events (phenology) is a key driver for the adaptation of grain crops to their environments. Anthesis (flowering) date is the critical phenological stage that has been most extensively studied. Maximum crop yield is achieved by maximising the duration of the pre-anthesis biomass accumulation phase and hence yield potential, while minimising the risk of water stress and temperature stress (heat and cold) during flowering and grain-filling stages. In this article, we review our understanding of phenology of the valuable oilseed crop canola (oilseed rape, Brassica napus L.) from the perspectives of biophysical modelling and genetics. In conjunction, we review the genomic resources for canola and how they could be used to develop models that can accurately predict flowering date in any given set of environmental conditions. Finally, we discuss how molecular marker tools can help canola breeders to continue to improve canola productivity in the light of climate changes and to broaden its adaptation into new agricultural areas.

Additional keywords: Arabidopsis, modelling phenology, next generation sequencing, photoperiod, thermal time to flowering, vernalisation.


References

Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biology 10, 54
Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers.Crossref | GoogleScholarGoogle Scholar | 20350303PubMed |

Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nature Reviews. Genetics 13, 627–639.
The genetic basis of flowering responses to seasonal cues.Crossref | GoogleScholarGoogle Scholar | 22898651PubMed |

Annisa Chen S, Turner NC, Cowling WA (2013) Genetic variation for heat tolerance during the reproductive phase in Brassica rapa. Journal of Agronomy & Crop Science 199, 424–435.
Genetic variation for heat tolerance during the reproductive phase in Brassica rapa.Crossref | GoogleScholarGoogle Scholar |

Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164–167.
Vernalization requires epigenetic silencing of FLC by histone methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFOnug%3D%3D&md5=d8cd6eb7574970c6e33da9eeddd7e119CAS | 14712277PubMed |

Batley J, Edwards D (2009) Genome sequence data: management, storage, and visualization. BioTechniques 46, 333–336.
Genome sequence data: management, storage, and visualization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslSmsrw%3D&md5=f305298f50e6357c449fca5681cf6a60CAS | 19480628PubMed |

Bayer PE, Ruperao P, Mason AS, Stiller J, Chan C-KK, Hayashi S, Long Y, Meng J, Sutton T, Visendi P, Varshney RK, Batley J, Edwards D (2015) High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. Theoretical and Applied Genetics 128, 1039–1047.
High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus.Crossref | GoogleScholarGoogle Scholar | 25754422PubMed |

Becker HC, Engqvist GM, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theoretical and Applied Genetics 91, 62–67.
Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsFKrsbc%3D&md5=50b0bc1547d84e9d6a8dbad13339cebeCAS | 24169668PubMed |

Boden SA, Cavanagh C, Cullis BR, Ramm K, Greenwood J, Finnegan EJ, Trevaskis B, Swain SM (2015) Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nature Plants 1, 14016
Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFertL3L&md5=b6cbda673770719b29662228aea01fc4CAS |

Bogard M, Ravel C, Paux E, Bordes J, Balfourier F, Chapman SC, Le Gouis J, Allard V (2014) Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. Journal of Experimental Botany 65, 5849–5865.
Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXis12ru7Y%3D&md5=038bba330c3f4f8888a3969fa79c6da5CAS | 25148833PubMed |

Brill RD, Jenkins ML, Gardner MJ, Lilley JM, Orchard BA (2016) Optimising canola establishment and yield in south-eastern Australia with hybrids and large seed. Crop & Pasture Science 67, 409–418.

Brown HE, Jamieson PD, Brooking IR, Moot DJ, Huth NI (2013) Integration of molecular and physiological models to explain time of anthesis in wheat. Annals of Botany 112, 1683–1703.
Integration of molecular and physiological models to explain time of anthesis in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKns7vF&md5=061a48c4d121c0d915de6e26b7c9426aCAS | 24220102PubMed |

Bus A, Körber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theoretical and Applied Genetics 123, 1413–1423.
Patterns of molecular variation in a species-wide germplasm set of Brassica napus.Crossref | GoogleScholarGoogle Scholar | 21847624PubMed |

Bus A, Hecht J, Huettel B, Reinhardt R, Stich B (2012) High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing. BMC Genomics 13, 281
High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslehsL3J&md5=a3d1ea2e3d82e27cd37910a59d8700d0CAS | 22726880PubMed |

Cai C, Tu J, Fu T, Chen B (2008) The genetic basis of flowering time and photoperiod sensitivity in rapeseed Brassica napus L. Russian Journal of Genetics 44, 326–333.
The genetic basis of flowering time and photoperiod sensitivity in rapeseed Brassica napus L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt12mu7s%3D&md5=6b6ccc9d9b7f065e5bf23b22bf5c9ecdCAS |

Caicedo AL, Stinchcombe JR, Olsen KM, Schmitt J, Purugganan MD (2004) Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proceedings of the National Academy of Sciences of the United States of America 101, 15670–15675.
Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWisLvF&md5=42ff32f0c6dbd65f83613013152a820aCAS | 15505218PubMed |

Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M-C, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee T-H, Thi VHD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury J-M, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953.
Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlOmsr%2FK&md5=e9f4c3d54b4005e136ef2ba825860584CAS | 25146293PubMed |

Chapman SC, Hammer GL, Podlich DW, Cooper M (2002) Linking biophysical and genetic models to integrate physiology, molecular biology and plant breeding. In ‘Quantitative genetics, genomics and plant breeding’. (Ed. M Kang) pp. 167–187. (CAB International: Wallingford, UK)

Chen S, Nelson MN, Ghamkhar K, Fu T, Cowling WA (2008) Divergent patterns of allelic diversity from similar origins: the case of oilseed rape (Brassica napus L.) in China and Australia. Genome 51, 1–10.
Divergent patterns of allelic diversity from similar origins: the case of oilseed rape (Brassica napus L.) in China and Australia.Crossref | GoogleScholarGoogle Scholar | 18356934PubMed |

Christy B, O’Leary G, Riffkin P, Acuna T, Potter T, Clough A (2013) Long-season canola (Brassica napus L.) cultivars offer potential to substantially increase grain yield production in south-eastern Australia compared with current spring cultivars. Crop & Pasture Science 64, 901–913.
Long-season canola (Brassica napus L.) cultivars offer potential to substantially increase grain yield production in south-eastern Australia compared with current spring cultivars.Crossref | GoogleScholarGoogle Scholar |

Clarke WE, Parkin IA, Gajardo HA, Gerhardt DJ, Higgins E, Sidebottom C, Sharpe AG, Snowdon RJ, Federico ML, Iniguez-Luy FL (2013) Genomic DNA enrichment using sequence capture microarrays: a novel approach to discover sequence nucleotide polymorphisms (SNP) in Brassica napus L. PLoS One 8,
Genomic DNA enrichment using sequence capture microarrays: a novel approach to discover sequence nucleotide polymorphisms (SNP) in Brassica napus L.Crossref | GoogleScholarGoogle Scholar |

Cornish MA (1990) Selection during a selfing programme. I. The effects of a single round of selection. Heredity 65, 201–211.
Selection during a selfing programme. I. The effects of a single round of selection.Crossref | GoogleScholarGoogle Scholar | 2272849PubMed |

Cowling WA (2007) Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crops Research 104, 103–111.
Genetic diversity in Australian canola and implications for crop breeding for changing future environments.Crossref | GoogleScholarGoogle Scholar |

Cowling WA, Balázs E (2010) Prospects and challenges for genome-wide association and genomic selection in oilseed Brassica species. Genome 53, 1024–1028.
Prospects and challenges for genome-wide association and genomic selection in oilseed Brassica species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cbmvFKgsQ%3D%3D&md5=31889d89bd41aea874fdb0969c3ed447CAS | 21076518PubMed |

Cowling WA, Buirchell BJ, Falk DE (2009) A model for incorporating novel alleles from the primary gene pool into elite crop breeding programs while reselecting major genes for domestication or adaptation. Crop & Pasture Science 60, 1009–1015.
A model for incorporating novel alleles from the primary gene pool into elite crop breeding programs while reselecting major genes for domestication or adaptation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCntr%2FO&md5=38ce5dced9511b6e880e866c4e14f446CAS |

Cowling W, Stefanova K, Beeck C, Nelson M, Hargreaves B, Sass O, Gilmour A, Siddique K (2015) Using the animal model to accelerate response to selection in a self-pollinating crop. G3: Genes, Genomes, Genetics 5, 1419–1428.
Using the animal model to accelerate response to selection in a self-pollinating crop.Crossref | GoogleScholarGoogle Scholar |

Dalton-Morgan J, Hayward A, Alamery S, Tollenaere R, Mason A, Campbell E, Patel D, Lorenc M, Yi B, Long Y, Meng J, Raman R, Raman H, Lawley C, Edwards D, Batley J (2014) A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes. Functional & Integrative Genomics 14, 643–655.
A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSqsLjK&md5=491dda17a356e652ff72dc3fd00b2a42CAS |

Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics 113, 1331–1345.
Genetic control of oil content in oilseed rape (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOmu7rF&md5=23214cdb33abb3479b7c554d6d4e2c56CAS | 16960716PubMed |

Delourme R, Falentin C, Fomeju BF, Boillot M, Lassalle G, Andre I, Duarte J, Gauthier V, Lucante N, Marty A, Pauchon M, Pichon JP, Ribiere N, Trotoux G, Blanchard P, Riviere N, Martinant JP, Pauquet J (2013) High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genomics 14, 120
High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVSgu74%3D&md5=1bcddacf4d1d83fd9ff9357e359a8b0cCAS | 23432809PubMed |

Deng W, Ying H, Helliwell CA, Taylor JM, Peacock WJ, Dennis ES (2011) FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 108, 6680–6685.
FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1Kgurw%3D&md5=2899b32791e33ca25ebf77dd1fa04bcdCAS | 21464308PubMed |

Diepenbrock W (2000) Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Research 67, 35–49.
Yield analysis of winter oilseed rape (Brassica napus L.): a review.Crossref | GoogleScholarGoogle Scholar |

Durstewitz G, Polley A, Plieske J, Luerssen H, Graner EM, Wieseke R, Ganal MW (2010) SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus. Genome 53, 948–956.

Edwards D, Batley J, Snowdon R (2013) Accessing complex crop genomes with next-generation sequencing. Theoretical and Applied Genetics 126, 1–11.
Accessing complex crop genomes with next-generation sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1yntQ%3D%3D&md5=c1577e90bfb8f0b777fc3f76415f376aCAS | 22948437PubMed |

Farré I, Robertson MJ, Walton GH, Asseng S (2002) Simulating phenology and yield response of canola to sowing date in Western Australia using the APSIM model. Australian Journal of Agricultural Research 53, 1155–1164.
Simulating phenology and yield response of canola to sowing date in Western Australia using the APSIM model.Crossref | GoogleScholarGoogle Scholar |

Farré I, Robertson M, Asseng S (2007) Reliability of canola production in different rainfall zones of Western Australia. Australian Journal of Agricultural Research 58, 326–334.
Reliability of canola production in different rainfall zones of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC (1995) Mapping loci controlling vernalisation requirement and flowering time in Brassica napus. Theoretical and Applied Genetics 90, 727–732.
Mapping loci controlling vernalisation requirement and flowering time in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 24174034PubMed |

Giakountis A, Cremer F, Sim S, Reymond M, Schmitt J, Coupland G (2010) Distinct patterns of genetic variation alter flowering responses of Arabidopsis accessions to different daylengths. Plant Physiology 152, 177–191.
Distinct patterns of genetic variation alter flowering responses of Arabidopsis accessions to different daylengths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsF2mu74%3D&md5=1e86de41d3ee678a0ba77796b1df372cCAS | 19889880PubMed |

Giraut L, Falque M, Drouaud J, Pereira L, Martin OC, Mézard C (2011) Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLOS Genetics 7, e1002354
Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSrtL7N&md5=3bd7f7c0f4acfc2febe4404919cc0916CAS | 22072983PubMed |

Golicz A, Batley J, Edwards D (2015a) Towards plant pangenomics. Plant Biotechnology Journal
Towards plant pangenomics.Crossref | GoogleScholarGoogle Scholar | 26593040PubMed |

Golicz AA, Bayer PE, Edwards D (2015b) Skim-based genotyping by sequencing. In ‘Plant genotyping’. Vol. 1245. (Ed. J Batley) pp. 257–270. (Springer: New York)

Gomez NV, Miralles DJ (2011) Factors that modify early and late reproductive phases in oilseed rape (Brassica napus L.): its impact on seed yield and oil content. Industrial Crops and Products 34, 1277–1285.
Factors that modify early and late reproductive phases in oilseed rape (Brassica napus L.): its impact on seed yield and oil content.Crossref | GoogleScholarGoogle Scholar |

Gunasekera CP, Martin LD, Siddique KHM, Walton GH (2006a) Genotype by environment interactions of Indian mustard (Brassica juncea L.) and canola (B. napus L.) in Mediterranean-type environments: 1. Crop growth and seed yield. European Journal of Agronomy 25, 1–12.
Genotype by environment interactions of Indian mustard (Brassica juncea L.) and canola (B. napus L.) in Mediterranean-type environments: 1. Crop growth and seed yield.Crossref | GoogleScholarGoogle Scholar |

Gunasekera CP, Martin LD, Siddique KHM, Walton GH (2006b) Genotype by environment interactions of Indian mustard (Brassica juncea L.) and canola (Brassica napus L.) in Mediterranean-type environments: II. Oil and protein concentrations in seed. European Journal of Agronomy 25, 13–21.
Genotype by environment interactions of Indian mustard (Brassica juncea L.) and canola (Brassica napus L.) in Mediterranean-type environments: II. Oil and protein concentrations in seed.Crossref | GoogleScholarGoogle Scholar |

Guo YM, Turner NC, Chen S, Nelson MN, Siddique KHM, Cowling WA (2015) Genotypic variation for tolerance to transient drought during the reproductive phase of Brassica rapa. Journal of Agronomy & Crop Science 201, 267–279.
Genotypic variation for tolerance to transient drought during the reproductive phase of Brassica rapa.Crossref | GoogleScholarGoogle Scholar |

Habekotté B (1997) A model of the phenological development of winter oilseed rape (Brassica napus L.). Field Crops Research 54, 127–136.
A model of the phenological development of winter oilseed rape (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar |

Hammer GL, Kropff MJ, Sinclair TR, Porter JR (2002) Future contributions of crop modelling – from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. European Journal of Agronomy 18, 15–31.
Future contributions of crop modelling – from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement.Crossref | GoogleScholarGoogle Scholar |

Hasan M, Seyis F, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon RJ (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genetic Resources and Crop Evolution 53, 793–802.
Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFahsbo%3D&md5=c93d0024fd9a469bedba6601322b1100CAS |

Hayward A, McLanders J, Campbell E, Edwards D, Batley J (2012a) Genomic advances will herald new insights into the Brassica: Leptosphaeria maculans pathosystem. Plant Biology 14, 1–10.
Genomic advances will herald new insights into the Brassica: Leptosphaeria maculans pathosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlslOgsLk%3D&md5=09c908ee0cfd26a33cdeb09f362e1b4eCAS | 21973193PubMed |

Hayward A, Mason A, Dalton-Morgan J, Zander M, Edwards D, Batley J (2012b) SNP discovery and applications in Brassica napus. Journal of Plant Biotechnology 39, 49–61.
SNP discovery and applications in Brassica napus.Crossref | GoogleScholarGoogle Scholar |

Hochman Z, van Rees H, Carberry PS, Hunt JR, McCown RL, Gartmann A, Holzworth D, van Rees S, Dalgliesh NP, Long W, Peake AS, Poulton PL, McClelland T (2009) Re-inventing model-based decision support with Australian dryland farmers. 4. Yield Prophet (R) helps farmers monitor and manage crops in a variable climate. Crop & Pasture Science 60, 1057–1070.
Re-inventing model-based decision support with Australian dryland farmers. 4. Yield Prophet (R) helps farmers monitor and manage crops in a variable climate.Crossref | GoogleScholarGoogle Scholar |

Hocking PJ, Stapper M (2001) Effects of sowing time and nitrogen fertiliser on canola and wheat, and nitrogen fertiliser on Indian mustard. I. Dry matter production, grain yield, and yield components. Australian Journal of Agricultural Research 52, 623–634.
Effects of sowing time and nitrogen fertiliser on canola and wheat, and nitrogen fertiliser on Indian mustard. I. Dry matter production, grain yield, and yield components.Crossref | GoogleScholarGoogle Scholar |

Holzworth DP, Huth NI, deVoil PG, Zurcher EJ, Herrmann NI, McLean G, Chenu K, van Oosterom EJ, Snow V, Murphy C, Moore AD, Brown H, Whish JPM, Verrall S, Fainges J, Bell LW, Peake AS, Poulton PL, Hochman Z, Thorburn PJ, Gaydon DS, Dalgliesh NP, Rodriguez D, Cox H, Chapman S, Doherty A, Teixeira E, Sharp J, Cichota R, Vogeler I, Li FY, Wang E, Hammer GL, Robertson MJ, Dimes JP, Whitbread AM, Hunt J, van Rees H, McClelland T, Carberry PS, Hargreaves JNG, MacLeod N, McDonald C, Harsdorf J, Wedgwood S, Keating BA (2014) APSIM – evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software 62, 327–350.
APSIM – evolution towards a new generation of agricultural systems simulation.Crossref | GoogleScholarGoogle Scholar |

Hong CP, Kwon SJ, Kim JS, Yang TJ, Park BS, Lim YP (2008) Progress in understanding and sequencing the genome of Brassica rapa. International Journal of Plant Genomics 2008, 582837
Progress in understanding and sequencing the genome of Brassica rapa.Crossref | GoogleScholarGoogle Scholar | 18288250PubMed |

Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B, Meng J (2012) A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biology 12, 238
A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVSru7w%3D&md5=9f54182794850c9557af29a8748fd45cCAS | 23241244PubMed |

Imelfort M, Edwards D (2009) De novo sequencing of plant genomes using second-generation technologies. Briefings in Bioinformatics 10, 609–618.
De novo sequencing of plant genomes using second-generation technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKntbnN&md5=7d02117edfd0a3f5a32e7242edf559a3CAS | 19933209PubMed |

Imelfort M, Duran C, Batley J, Edwards D (2009) Discovering genetic polymorphisms in next-generation sequencing data. Plant Biotechnology Journal 7, 312–317.
Discovering genetic polymorphisms in next-generation sequencing data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFOitLw%3D&md5=82420b459eebe695513aff528f822882CAS | 19386039PubMed |

Jamieson PD, Semenov MA, Brooking IR, Francis GS (1998) Sirius: a mechanistic model of wheat response to environmental variation. European Journal of Agronomy 8, 161–179.
Sirius: a mechanistic model of wheat response to environmental variation.Crossref | GoogleScholarGoogle Scholar |

Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344–347.
Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVGiurw%3D&md5=2440d4ece70cbe114b8a3dc017fdd0ceCAS | 11030654PubMed |

Kaczmarek M, Cowling WA, Nelson MN (2011) Molecular mapping of complex traits. In ‘Genetics, genomics and breeding of vegetable brassicas’. (Eds J Sadowski, C Kole) pp. 197–256. (Science Publishers Inc.: Enfield, NH, USA)

Kirkegaard JA, Lilley JM, Brill RD, Sprague SJ, Fettell NA, Pengilley GC (2016) Re-evaluating sowing time of spring canola (Brassica napus L.) in south-eastern Australia—how early is too early? Crop & Pasture Science 67, 381–396.

Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B, Osborn TC (2002) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Molecular Breeding 9, 201–210.
Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVWrsLw%3D&md5=65db6d3af9448256259717ea0ab40ac4CAS |

Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nature Genetics 42, 459–463.
The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFarsrg%3D&md5=ac4e93875a2efeb007c3666c717a1a76CAS | 20348958PubMed |

Lagercrantz U, Putterill J, Coupland G, Lydiate DJ (1996) Comparative genome mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time in Brassica. The Plant Journal 9, 13–20.
Comparative genome mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time in Brassica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsFKlu74%3D&md5=f247dcfcdb130841b69646c37a7048e6CAS | 8580970PubMed |

Letort V, Mahe P, Cournède P-H, de Reffye P, Courtois B (2008) Quantitative genetics and functional–structural plant growth models: simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Annals of Botany 101, 1243–1254.
Quantitative genetics and functional–structural plant growth models: simulation of quantitative trait loci detection for model parameters and application to potential yield optimization.Crossref | GoogleScholarGoogle Scholar | 17766844PubMed |

Li P, Filiault D, Box MS, Kerdaffrec E, van Oosterhout C, Wilczek AM, Schmitt J, McMullan M, Bergelson J, Nordborg M, Dean C (2014) Multiple FLC haplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana. Genes & Development 28, 1635–1640.
Multiple FLC haplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVWrtLrI&md5=d6691e48c2f78c2d09b37903039adc35CAS |

Li L, Long Y, Zhang L, Dalton-Morgan J, Batley J, Yu L, Meng J, Li M (2015) Genome wide analysis of flowering time trait in multiple environments via high-throughput genotyping technique in Brassica napus L. PLoS One 10, e0119425
Genome wide analysis of flowering time trait in multiple environments via high-throughput genotyping technique in Brassica napus L.Crossref | GoogleScholarGoogle Scholar | 25790019PubMed |

Lilley JM, Bell LW, Kirkegaard JA (2015) Optimising grain yield and grazing potential of crops across Australia’s high-rainfall zone: a simulation analysis. 2. Canola. Crop & Pasture Science 66, 349–364.
Optimising grain yield and grazing potential of crops across Australia’s high-rainfall zone: a simulation analysis. 2. Canola.Crossref | GoogleScholarGoogle Scholar |

Lin SI, Wang JG, Poon SY, Su CL, Wang SS, Chiou TJ (2005) Differential regulation of expression by vernalization FLOWERING LOCUS C in cabbage and Arabidopsis. Plant Physiology 137, 1037–1048.
Differential regulation of expression by vernalization FLOWERING LOCUS C in cabbage and Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislOqsrY%3D&md5=1fda200610d251ec1983b1e9df89d662CAS | 15734903PubMed |

Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T-J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park B-S, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T-H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications 5, 3930

Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B-S, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177, 2433–2444.

Lou P, Zhao J, Kim JS, Shen S, Del Carpio DP, Song X, Jin M, Vreugdenhil D, Wang X, Koornneef M, Bonnema G (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. Journal of Experimental Botany 58, 4005–4016.

Lutz U, Posé D, Pfeifer M, Gundlach H, Hagmann J, Wang C, Weigel D, Mayer KFX, Schmid M, Schwechheimer C (2015) Modulation of ambient temperature-dependent flowering in Arabidopsis thaliana by natural variation of FLOWERING LOCUS M. PLOS Genetics 11, e1005588
Modulation of ambient temperature-dependent flowering in Arabidopsis thaliana by natural variation of FLOWERING LOCUS M.Crossref | GoogleScholarGoogle Scholar | 26492483PubMed |

Méndez-Vigo B, Picó FX, Ramiro M, Martínez-Zapater JM, Alonso-Blanco C (2011) Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. Plant Physiology 157, 1942–1955.
Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 21988878PubMed |

Mendham NJ, Salisbury PA (1995) Physiology: crop development, growth and yield. In ‘Brassica oilseeds: production and utilization’. (Eds DS Kimber, DI McGregor) pp. 11–64. (CABI: Wallingford, UK)

Mendham NJ, Shipway PA, Scott RK (1981) The effects of delayed sowing and weather on growth, development and yield of winter oil-seed rape (Brassica napus). The Journal of Agricultural Science 96, 389–416.
The effects of delayed sowing and weather on growth, development and yield of winter oil-seed rape (Brassica napus).Crossref | GoogleScholarGoogle Scholar |

Miralles DJ, Ferro BC, Slafer GA (2001) Developmental responses to sowing date in wheat, barley and rapeseed. Field Crops Research 71, 211–223.
Developmental responses to sowing date in wheat, barley and rapeseed.Crossref | GoogleScholarGoogle Scholar |

Morrison MJ, Stewart DW (2002) Heat stress during flowering in summer Brassica. Crop Science 42, 797–803.
Heat stress during flowering in summer Brassica.Crossref | GoogleScholarGoogle Scholar |

Nakagawa H, Yamagishi J, Miyamoto N, Motoyama M, Yano M, Nemoto K (2005) Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theoretical and Applied Genetics 110, 778–786.
Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFShur0%3D&md5=89d5a10cfaea67ebcf4926788c09430eCAS | 15723276PubMed |

Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478, 119–122.
Control of flowering and storage organ formation in potato by FLOWERING LOCUS T.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WltLbE&md5=6456989fe50ed44198be4160a7b98be2CAS | 21947007PubMed |

Nelson MN, Nixon J, Lydiate DJ (2005) Genome-wide analysis of the frequency and distribution of crossovers at male and female meiosis in Sinapis alba L. (white mustard). Theoretical and Applied Genetics 111, 31–43.
Genome-wide analysis of the frequency and distribution of crossovers at male and female meiosis in Sinapis alba L. (white mustard).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1Smsb4%3D&md5=13342ded4791bc3e7f23c1b36893cf6aCAS | 15902398PubMed |

Nelson MN, Rajasekaran R, Smith A, Chen S, Beeck CP, Siddique KHM, Cowling WA (2014) Quantitative trait loci for thermal time to flowering and photoperiod responsiveness discovered in summer annual-type Brassica napus L. PLoS One 9, e102611
Quantitative trait loci for thermal time to flowering and photoperiod responsiveness discovered in summer annual-type Brassica napus L.Crossref | GoogleScholarGoogle Scholar | 25061822PubMed |

Okazaki K, Sakamoto K, Kikuchi R, Saito A, Togashi E, Kuginuki Y, Matsumoto S, Hirai M (2007) Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theoretical and Applied Genetics 114, 595–608.
Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ygsrk%3D&md5=4a6a4aa6a1dfc1f30179371d847c2122CAS | 17136371PubMed |

Ozer H (2003) Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars. European Journal of Agronomy 19, 453–463.
Sowing date and nitrogen rate effects on growth, yield and yield components of two summer rapeseed cultivars.Crossref | GoogleScholarGoogle Scholar |

Parkin I, Koh C, Tang H, Robinson S, Kagale S, Clarke W, Town C, Nixon J, Krishnakumar V, Bidwell S, Denoeud F, Belcram H, Links M, Just J, Clarke C, Bender T, Huebert T, Mason A, Pires JC, Barker G, Moore J, Walley P, Manoli S, Batley J, Edwards D, Nelson M, Wang X, Paterson A, King G, Bancroft I, Chalhoub B, Sharpe A (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology 15, R77
Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea.Crossref | GoogleScholarGoogle Scholar | 24916971PubMed |

Phillips D, Jenkins G, Macaulay M, Nibau C, Wnetrzak J, Fallding D, Colas I, Oakey H, Waugh R, Ramsay L (2015) The effect of temperature on the male and female recombination landscape of barley. New Phytologist 208, 421–429.
The effect of temperature on the male and female recombination landscape of barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFGrurzJ&md5=b3cc762be250b6a131239f7719859bf3CAS | 26255865PubMed |

Pires JC, Zhao JW, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biological Journal of the Linnean Society 82, 675–688.
Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae).Crossref | GoogleScholarGoogle Scholar |

Prakash S, Wu X-M, Bhat SR (2011) History, evolution, and domestication of Brassica crops. In ‘Plant breeding reviews’. Vol. 35. (Ed. J Janick) pp. 19–84. (John Wiley & Sons, Inc.: Hoboken, NJ, USA)

Qian L, Qian W, Snowdon R (2014) Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC Genomics 15, 1170
Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome.Crossref | GoogleScholarGoogle Scholar | 25539568PubMed |

Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theoretical and Applied Genetics 113, 549–561.
Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Oit78%3D&md5=c650290b9850e362b4477c96f255f7ffCAS | 16767447PubMed |

Rakow G, Edwards D, Batley J, Parkin I, Kole C (2011) Classical genetics and traditional breeding. In ‘Genetics, genomics and breeding of oilseed brassicas’. (Eds D Edwards, J Batley, I Parkin, C Kole) pp. 73–84. (Science Publishers, Inc.: Enfield, NH, USA)

Raman H, Raman R, Prangnell R, Eckermann P, Edwards D, Batley J, Coombes N, Taylor B, Wratten N, Luckett D, Dennis L (2011) Genetic dissection of natural variation for flowering time in rapeseed. In ‘Proceedings of the International Rapeseed Congress (Abstract Book)’. Prague, Czech Republic.

Raman R, Taylor B, Marcroft S, Stiller J, Eckermann P, Coombes N, Rehman A, Lindbeck K, Luckett D, Wratten N, Batley J, Edwards D, Wang X, Raman H (2012) Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). Theoretical and Applied Genetics 125, 405–418.
Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlKntrc%3D&md5=a551d11229fbe653222957145d30d48dCAS | 22454144PubMed |

Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Meng J, Prangnell R, Stiller J, Batley J, Luckett D, Wratten N, Dennis E (2013) Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). Theoretical and Applied Genetics 126, 119–132.
Genetic and physical mapping of flowering time loci in canola (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1ynsQ%3D%3D&md5=cb0091d62653c0be2f8e00d1f3b7af60CAS | 22955939PubMed |

Raman H, Dalton-Morgan J, Diffey S, Raman R, Alamery S, Edwards D, Batley J (2014) SNP markers-based map construction and genome-wide linkage analysis in Brassica napus. Journal of Plant Biotechnology 12, 851–860.
SNP markers-based map construction and genome-wide linkage analysis in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSrtL%2FK&md5=1dc52472df97ca1a347d6b78168987beCAS |

Richards RA, Thurling N (1978) Variation between and within species of rapeseed (Brassica campestris and B. napus) in response to drought stress. 1. Sensitivity at different stages of development. Australian Journal of Agricultural Research 29, 469–477.
Variation between and within species of rapeseed (Brassica campestris and B. napus) in response to drought stress. 1. Sensitivity at different stages of development.Crossref | GoogleScholarGoogle Scholar |

Robertson MJ, Lilley JM (2016) Simulation of growth, development and yield of canola (Brassica napus) in APSIM. Crop & Pasture Science 67, 332–344.

Robertson MJ, Watkinson AR, Kirkegaard JA, Holland JF, Potter TD, Burton W, Walton GH, Moot DJ, Wratten N, Farre I, Asseng S (2002) Environmental and genotypic control of time to flowering in canola and Indian mustard. Australian Journal of Agricultural Research 53, 793–809.
Environmental and genotypic control of time to flowering in canola and Indian mustard.Crossref | GoogleScholarGoogle Scholar |

Robertson MJ, Holland JF, Bambach R (2004) Response of canola and Indian mustard to sowing date in the grain belt of north-eastern Australia. Australian Journal of Experimental Agriculture 44, 43–52.
Response of canola and Indian mustard to sowing date in the grain belt of north-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Robinson SJ, Parkin IA, Singh J (2011) Abiotic stress tolerance of the Brassica oilseeds. In ‘Genetics, genomics and breeding of oilseed brassicas’. (Eds D Edwards, J Batley, I Parkin, C Kole) pp. 230. (CRC Press: Boca Raton, FL, USA)

Romera-Branchat M, Andres F, Coupland G (2014) Flowering responses to seasonal cues: what’s new? Current Opinion in Plant Biology 21, 120–127.
Flowering responses to seasonal cues: what’s new?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlWrs7rL&md5=58b3bfd5bf4c070859e159196a7e75b3CAS | 25072635PubMed |

Salisbury PA, Cowling WA, Potter TD (2016) Continuing innovation in Australian canola breeding. Crop & Pasture Science 67, 266–272.

Satake A, Kawagoe T, Saburi Y, Chiba Y, Sakurai G, Kudoh H (2013) Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes. Nature Communications 4, 2303
Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes.Crossref | GoogleScholarGoogle Scholar | 23941973PubMed |

Schiessl S, Samans B, Hüttel B, Reinhardt R, Snowdon RJ (2014) Capturing sequence variation among flowering-time regulatory gene homologues in the allopolyploid crop species Brassica napus. Frontiers in Plant Science 5, 404
Capturing sequence variation among flowering-time regulatory gene homologues in the allopolyploid crop species Brassica napus.Crossref | GoogleScholarGoogle Scholar | 25202314PubMed |

Schiessl S, Iniguez-Luy F, Qian W, Snowdon R (2015) Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. BMC Genomics 16, 737
Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus.Crossref | GoogleScholarGoogle Scholar | 26419915PubMed |

Schranz ME, Quijada P, Sung S-B, Lukens L, Amasino R, Osborn TC (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162, 1457–1468.

Shalit A, Rozman A, Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y, Lifschitz E (2009) The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proceedings of the National Academy of Sciences of the United States of America 106, 8392–8397.
The flowering hormone florigen functions as a general systemic regulator of growth and termination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsl2nsLo%3D&md5=2bded7c8eb09895717479809c98a9e5cCAS | 19416824PubMed |

Shrestha R, Gomez-Ariza J, Brambilla V, Fornara F (2014) Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Annals of Botany 114, 1445–1458.
Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals.Crossref | GoogleScholarGoogle Scholar | 24651369PubMed |

Snowdon RJ, Abbadi A, Kox T, Schmutzer T, Leckband G (2015) Heterotic Haplotype Capture: precision breeding for hybrid performance. Trends in Plant Science 20, 410–413.
Heterotic Haplotype Capture: precision breeding for hybrid performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotlGqu70%3D&md5=3b72bc62009881bc47239e10fff3e2ffCAS | 26027461PubMed |

Suay L, Zhang D, Eber F, Jouy H, Lodé M, Huteau V, Coriton O, Szadkowski E, Leflon M, Martin OC, Falque M, Jenczewski E, Paillard S, Chèvre A-M (2014) Crossover rate between homologous chromosomes and interference are regulated by the addition of specific unpaired chromosomes in Brassica. New Phytologist 201, 645–656.
Crossover rate between homologous chromosomes and interference are regulated by the addition of specific unpaired chromosomes in Brassica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFyrtbvE&md5=9fb11f6b428334577aa0c26b50bba051CAS | 24117470PubMed |

Tadege M, Sheldon CC, Helliwell CA, Stoutjesdijk P, Dennis ES, Peacock WJ (2001) Control of flowering time by FLC orthologues in Brassica napus. The Plant Journal 28, 545–553.
Control of flowering time by FLC orthologues in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVCnsg%3D%3D&md5=712635509a28a12fa3970abc7a0041a3CAS | 11849594PubMed |

Takashima NE, Rondanini DP, Puhl LE, Miralles DJ (2013) Environmental factors affecting yield variability in spring and winter rapeseed genotypes cultivated in the southeastern Argentine Pampas. European Journal of Agronomy 48, 88–100.
Environmental factors affecting yield variability in spring and winter rapeseed genotypes cultivated in the southeastern Argentine Pampas.Crossref | GoogleScholarGoogle Scholar |

The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 11130711PubMed |

Thurling N, Vijendra Das LD (1979a) Genetic control of the pre-anthesis development of spring rape (Brassica napus L.). I. Diallel analysis of variation in the field. Australian Journal of Agricultural Research 30, 251–259.
Genetic control of the pre-anthesis development of spring rape (Brassica napus L.). I. Diallel analysis of variation in the field.Crossref | GoogleScholarGoogle Scholar |

Thurling N, Vijendra Das LD (1979b) Genetic control of the pre-anthesis development of spring rape (Brassica napus L.). II. Identification of individual genes controlling developmental pattern. Australian Journal of Agricultural Research 30, 261–271.
Genetic control of the pre-anthesis development of spring rape (Brassica napus L.). II. Identification of individual genes controlling developmental pattern.Crossref | GoogleScholarGoogle Scholar |

Tollenaere R, Hayward A, Dalton-Morgan J, Campbell E, Lee JRM, Lorenc MT, Manoli S, Stiller J, Raman R, Raman H, Edwards D, Batley J (2012) Identification and characterization of candidate Rlm4 blackleg resistance genes in Brassica napus using next-generation sequencing. Plant Biotechnology Journal 10, 709–715.
Identification and characterization of candidate Rlm4 blackleg resistance genes in Brassica napus using next-generation sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWgu77P&md5=0dddc274c6cb64086de553c11e5e99cfCAS | 22726421PubMed |

Trick M, Long Y, Meng JL, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnology Journal 7, 334–346.
Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFOitLs%3D&md5=15f8dff211e132cd28573a9519e9649fCAS | 19207216PubMed |

Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theoretical and Applied Genetics 113, 597–609.
Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1yjsbw%3D&md5=c78fd08d9ac6a0f8ba726ad5b37d0942CAS | 16767446PubMed |

Uptmoor R, Li J, Schrag T, Stuetzel H (2012) Prediction of flowering time in Brassica oleracea using a quantitative trait loci-based phenology model. Plant Biology 14, 179–189.

van Ittersum MK, Donatelli M (2003) Modelling cropping systems – highlights of the symposium and preface to the special issues. European Journal of Agronomy 18, 187–197.
Modelling cropping systems – highlights of the symposium and preface to the special issues.Crossref | GoogleScholarGoogle Scholar |

Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J (2009) The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evolutionary Biology 9, 271
The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks.Crossref | GoogleScholarGoogle Scholar | 19939256PubMed |

Wang N, Qian W, Suppanz I, Wei L, Mao B, Long Y, Meng J, Muller AE, Jung C (2011a) Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. Journal of Experimental Botany 62, 5641–5658.
Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCit7zP&md5=307986506d8ed70f007cac6decbd771aCAS | 21862478PubMed |

Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park B-S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim J-S, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S-J, Choi S-R, Lee T-H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011b) The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics 43, 1035–1039.
The genome of the mesopolyploid crop species Brassica rapa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gtrbL&md5=121206142a7db658e2616a5a25336bddCAS | 21873998PubMed |

Wang S, Wang E, Wang F, Tang L (2012) Phenological development and grain yield of canola as affected by sowing date and climate variation in the Yangtze River Basin of China. Crop & Pasture Science 63, 478–488.
Phenological development and grain yield of canola as affected by sowing date and climate variation in the Yangtze River Basin of China.Crossref | GoogleScholarGoogle Scholar |

Wang N, Li F, Chen B, Xu K, Yan G, Qiao J, Li J, Gao G, Bancroft I, Meng J, King G, Wu X (2014) Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theoretical and Applied Genetics 127, 1817–1829.
Genome-wide investigation of genetic changes during modern breeding of Brassica napus.Crossref | GoogleScholarGoogle Scholar | 24947439PubMed |

Westermeier P, Wenzel G, Mohler V (2009) Development and evaluation of single-nucleotide polymorphism markers in allotetraploid rapeseed (Brassica napus L.). Theoretical and Applied Genetics 119, 1301–1311.
Development and evaluation of single-nucleotide polymorphism markers in allotetraploid rapeseed (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSjsLbM&md5=b2d916ae9846037e9a36bc324c6e9651CAS | 19756476PubMed |

White JW (2009) Combining ecophysiological models and genomics to decipher the GEM-to-P problem. Njas-Wageningen Journal of Life Sciences 57, 53–58.
Combining ecophysiological models and genomics to decipher the GEM-to-P problem.Crossref | GoogleScholarGoogle Scholar |

White JW, Hoogenboom G (1996) Simulating effects of genes for physiological traits in a process-oriented crop model. Agronomy Journal 88, 416–422.
Simulating effects of genes for physiological traits in a process-oriented crop model.Crossref | GoogleScholarGoogle Scholar |

Wilczek AM, Roe JL, Knapp MC, Cooper MD, Lopez-Gallego C, Martin LJ, Muir CD, Sim S, Walker A, Anderson J, Egan JF, Moyers BT, Petipas R, Giakountis A, Charbit E, Coupland G, Welch SM, Schmitt J (2009) Effects of genetic perturbation on seasonal life history plasticity. Science 323, 930–934.
Effects of genetic perturbation on seasonal life history plasticity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslSgsb8%3D&md5=233f2273693b1f3874bdb82fd958c326CAS | 19150810PubMed |

Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138, 750–759.
The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCjs7rK&md5=371e8b771fd83db321cfecccfa80125eCAS | 19703400PubMed |

Yin XY, Struik PC, van Eeuwijk FA, Stam P, Tang JJ (2005) QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. Journal of Experimental Botany 56, 967–976.
QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1Knurg%3D&md5=9de09da048aa1b1508791bf6ec2d0c63CAS |

Yuan Y-X, Wu J, Sun R-F, Zhang X-W, Xu D-H, Bonnema G, Wang X-W (2009) A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. Journal of Experimental Botany 60, 1299–1308.
A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFShsbk%3D&md5=bca0a90e5211663d0c1c39ef5a162096CAS | 19190098PubMed |

Zhao JJ, Kulkarni V, Liu NN, Del Carpio DP, Bucher J, Bonnema G (2010) BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. Journal of Experimental Botany 61, 1817–1825.
BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVOgsL8%3D&md5=d0c3aba34cb4d2d9faaed82bf2c52e9aCAS |

Zheng B, Biddulph B, Li D, Kuchel H, Chapman S (2013) Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. Journal of Experimental Botany 64, 3747–3761.
Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yrsrzJ&md5=bfc804c647b2bfd2265726362dcc37e4CAS | 23873997PubMed |

Zou X, Suppanz I, Raman H, Hou J, Wang J, Long Y, Jung C, Meng J (2012) Comparative analysis of FLC homologues in Brassicaceae provides insight into their role in the evolution of oilseed rape. PLoS One 7, e45751
Comparative analysis of FLC homologues in Brassicaceae provides insight into their role in the evolution of oilseed rape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2jtbjJ&md5=3292eac362b223f7f463ada54022c089CAS | 23029223PubMed |