Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Quantitative genetic analysis of grain yield in an Australian Brassica napus doubled-haploid population

Rosy Raman A , Simon Diffey B , Jason Carling C , Ray B. Cowley A D , Andrzej Kilian C , David J. Luckett A and Harsh Raman A E
+ Author Affiliations
- Author Affiliations

A Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia.

B Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia.

C Diversity Arrays Technology P/L, University of Canberra, Canberra, ACT 2601, Australia.

D DuPont Pioneer, PO Box 52, Wagga Wagga, NSW 2650, Australia.

E Corresponding author. Email: harsh.raman@dpi.nsw.gov.au

Crop and Pasture Science 67(4) 298-307 https://doi.org/10.1071/CP15283
Submitted: 30 August 2015  Accepted: 1 February 2016   Published: 21 April 2016

Abstract

High yield is a major objective in canola-breeding programs. We analysed the genetic determinants controlling variation in grain yield in a doubled-haploid (DH) breeding population derived from a single BC1F1 plant from the cross Skipton/Ag-Spectrum//Skipton (designated as the SAgS population). DH lines were evaluated for flowering time and yield in two replicated trials and exhibited significant genetic variation for both traits. Yield showed negative correlation with flowering time; lines that flowered earlier had higher yield than late-flowering lines. A genetic linkage map comprising 7716 DArTseq markers was constructed for the SAgS population, and a ‘bin’ map based on 508 discrete single-position (non-co-segregating) marker loci was used for quantitative trait locus (QTL) analysis. We identified 20 QTLs (LOD ≥2) associated with variation in flowering time and grain yield. Two QTLs (Qy.wwai-A7/Qdtf.wwai-A7/Qfs.wwai-A7 and Qy.wwai-C3a/Qfs.wwai-C3a) appeared repeatedly across experiments, accounting for 4.9–19% of the genotypic variation in flowering time and yield and were located on chromosomes A07 and C03. We identified 22 putative candidate genes for flowering time as well as grain yield, and all were located in a range of 935 bp to 2.97 Mb from markers underlying QTLs. This research provides useful information to be used for breeding high-yielding canola varieties by combining favourable alleles for early flowering and higher grain yield at loci on chromosomes A07, C03 and possibly on A06.

Additional keywords: candidate genes, canola QTL, flowering time, grain yield, rapeseed.


References

Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics 120, 271–281.
Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1Mfhs1Cltg%3D%3D&md5=2b7f2c47cd9fb9d13acd093b46296febCAS | 19707740PubMed |

Bayer P, Ruperao P, Mason A, Stiller J, Chan C-K, Hayashi S, Long Y, Meng J, Sutton T, Visendi P, Varshney R, Batley J, Edwards D (2015) High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. Theoretical and Applied Genetics 128, 1039–1047.
High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus.Crossref | GoogleScholarGoogle Scholar | 25754422PubMed |

Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual. Release 2.0. Technical report. Queensland Department of Primary Industries, Australia. Available at: www.vsni.co.uk/downloads/asreml/release2/doc/asreml-R.pdf

Cai G, Yang Q, Yang Q, Zhao Z, Chen H, Wu J, Fan C, Zhou Y (2012) Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species. BMC Genetics 13, 105
Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Gktrw%3D&md5=1a9be1fee251cf4069280bb494d2e353CAS | 23216693PubMed |

Cai D, Xiao Y, Yang W, Ye W, Wang B, Younas M, Wu J, Liu K (2014) Association mapping of six yield-related traits in rapeseed (Brassica napus L.). Theoretical and Applied Genetics 127, 85–96.
Association mapping of six yield-related traits in rapeseed (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ehtLfE&md5=0d6bc953711a3af08e2e1c4034b3a922CAS | 24121524PubMed |

Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa MCDS, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M-C, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee T-H, Ha Dinh Thi V, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury J-M, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953.
Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlOmsr%2FK&md5=e9f4c3d54b4005e136ef2ba825860584CAS | 25146293PubMed |

Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty P, Tahir M (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175, 161–174.
Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvV2it7c%3D&md5=8d8e0783b8a259f4097932b2c8d9616aCAS |

Delourme R, Barbetti MJ, Snowdon R, Zhao J, Manzanares-Dauleux MJ (2011) ‘Genetics and genomics of disease resistance.’ (Eds BJ Edwards, IAP Parkin, C Kole) (Science Publishers, CRC Press: Boca Raton, FL, USA)

Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Annals of Botany 109, 747–759.
Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFKjurs%3D&md5=717dbf0eab4274017156e6b49377ceeaCAS | 22234558PubMed |

Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews. Genetics 3, 43–52.
Mapping and analysis of quantitative trait loci in experimental populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsV2gsbY%3D&md5=a5aab557addee86ec20286022bd445c1CAS | 11823790PubMed |

Fletcher RS, Mullen JL, Heiliger A, McKay JK (2015) QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. Journal of Experimental Botany 66, 245–256.
QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisFeju7c%3D&md5=d13778b566f23695ffd0e7291c2aaefaCAS | 25371500PubMed |

Gilmour A, Cullis B, Verbyla A (1997) Accounting for natural and extraneous variation in the analysis of field experiments. Journal of Agricultural Biological & Environmental Statistics 2, 269–273.
Accounting for natural and extraneous variation in the analysis of field experiments.Crossref | GoogleScholarGoogle Scholar |

Guo Y, Harloff H-J, Jung C, Molina C (2014) Mutations in single FT- and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components. Frontiers in Plant Science 5, 282
Mutations in single FT- and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components.Crossref | GoogleScholarGoogle Scholar | 24987398PubMed |

Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101, 5–18.
Array-based high-throughput DNA markers for crop improvement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1eis7Y%3D&md5=0bfb7777a0c3ef3195a8d793cd9ab3f4CAS | 18461083PubMed |

Kramer C, Polewicz H, Osborn T (2009) Evaluation of QTL alleles from exotic sources for hybrid seed yield in the original and different genetic backgrounds of spring-type Brassica napus L. Molecular Breeding 24, 419–431.
Evaluation of QTL alleles from exotic sources for hybrid seed yield in the original and different genetic backgrounds of spring-type Brassica napus L.Crossref | GoogleScholarGoogle Scholar |

Li YY, Shen J, Wang T, Chen Q, Zhang X, Fu T, Meng J, Tu J, Ma C (2007) QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Australian Journal of Agricultural Research 58, 759–766.
QTL analysis of yield-related traits and their association with functional markers in Brassica napus L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSgt73L&md5=954dcf93c95445e4fa02122a91402bcaCAS |

Li Y, Zheng L, Corke F, Smith C, Bevan MW (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes & Development 22, 1331–1336.
Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVWmsbc%3D&md5=4d31e43f6d73eeba1ad395652faa3379CAS |

Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper A, Trick M, Liu S, Gao G, Wang N, Yan G, Qiao J, Li J, Li H, Xiao X, Zhang T, Wu X (2014a) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Research 21, 355–367.
Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar | 24510440PubMed |

Li N, Shi J, Wang X, Liu G, Wang H (2014b) A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biology 14, 114
A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar | 24779415PubMed |

Li S, Chen L, Zhang L, Li X, Liu Y, Wu Z, Dong F, Wan L, Liu K, Hong D, Yang G (2015) BnaC9.SMG7b functions as a positive regulator of number of seeds per silique in rapeseed (Brassica napus L.) by regulating the formation of functional female gametophytes. Plant Physiology 169, 2744–2760.

Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T-J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park B-S, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T-H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications 5, 3930

Liu G, Zhang K, Ai J, Su Y, Deng X, Hong Y, Wang X (2015a) Patatin-related phospholipase A, pPLAIIIα, modulates the longitudinal growth of vegetative tissues and seeds in rice. Journal of Experimental Botany 66, 6945–6955.

Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H (2015b) Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proceedings of the National Academy of Sciences of the United States of America 112, E5123–E5132.
Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVajtrbF&md5=fd454d4741d58f5531cf4ab863f1a7b5CAS | 26324896PubMed |

Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B-S, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177, 2433–2444.

Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 102, 17531–17536.
MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSqtb3L&md5=c470a342723d97165c92507728aabe32CAS | 16293693PubMed |

Morrison MJ (1993) Heat stress during reproduction in summer rape. Canadian Journal of Botany 71, 303–308.
Heat stress during reproduction in summer rape.Crossref | GoogleScholarGoogle Scholar |

Nelson MN, Rajasekaran R, Smith A, Chen S, Beeck CP, Siddique KHM, Cowling WA (2014) Quantitative trait loci for thermal time to flowering and photoperiod responsiveness discovered in summer annual-type Brassica napus L. PLoS One 9, e102611
Quantitative trait loci for thermal time to flowering and photoperiod responsiveness discovered in summer annual-type Brassica napus L.Crossref | GoogleScholarGoogle Scholar | 25061822PubMed |

Osborn TC, Lukens L (2003) The molecular genetic basis of flowering time variation in Brassica species. In ‘Biotechnology in Agriculture and Forestry. 52. Brassica and legume from genome structure to breeding’. (Eds T Nagata, S Tabata) pp. 69–86. (Springer-Verlag: Berlin)

Pastina MM, Malosetti M, Gazaffi R, Mollinari M, Margarido GRA, Oliveira KM, Pinto LR, Souza AP, van Eeuwijk FA, Garcia AAF (2012) A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. Theoretical and Applied Genetics 124, 835–849.
A mixed model QTL analysis for sugarcane multiple-harvest-location trial data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC383lsVOltw%3D%3D&md5=f272cccb8f1b770b2b0a373cdfff32c5CAS | 22159754PubMed |

Price AH (2006) Believe it or not, QTLs are accurate! Trends in Plant Science 11, 213–216.
Believe it or not, QTLs are accurate!Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1Oksbk%3D&md5=545fb714d4ae80a9d7f1ba9d8aee71f2CAS | 16617032PubMed |

Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theoretical and Applied Genetics 113, 549–561.
Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Oit78%3D&md5=c650290b9850e362b4477c96f255f7ffCAS | 16767447PubMed |

R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: www.R-project.org/

Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179, 1547–1558.
Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCqt7%2FN&md5=05851b3c0b553ae8f935d0237fc41b4bCAS | 18562665PubMed |

Raman R, Allen H, Diffey S, Raman H, Martin P, McKelvie K (2009) Localisation of quantitative trait loci for quality attributes in a doubled haploid population of wheat (Triticum aestivum L.). Genome 52, 701–715.
Localisation of quantitative trait loci for quality attributes in a doubled haploid population of wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSjsrnP&md5=94606787c1ed62ba4792b500c62f9e2fCAS | 19767900PubMed |

Raman R, Taylor B, Marcroft S, Stiller J, Eckermann P, Coombes N, Rehman A, Lindbeck K, Luckett D, Wratten N, Batley J, Edwards D, Wang X, Raman H (2012) Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). Theoretical and Applied Genetics 125, 405–418.
Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlKntrc%3D&md5=a551d11229fbe653222957145d30d48dCAS | 22454144PubMed |

Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Meng J, Prangnell R, Stiller J, Batley J, Luckett D, Wratten N, Dennis E (2013a) Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). Theoretical and Applied Genetics 126, 119–132.
Genetic and physical mapping of flowering time loci in canola (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1ynsQ%3D%3D&md5=cb0091d62653c0be2f8e00d1f3b7af60CAS | 22955939PubMed |

Raman H, Raman R, Kilian A, Detering F, Long Y, Edwards D, Parkin I, Sharpe A, Nelson M, Larkan N, Zou J, Meng J, Aslam MN, Batley J, Cowling W, Lydiate D (2013b) A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: Applications in genetic dissection of qualitative and quantitative traits. BMC Genomics 14, 277
A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: Applications in genetic dissection of qualitative and quantitative traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1yht7o%3D&md5=890a75a1326c6a774508273bff45058bCAS | 23617817PubMed |

Raman H, Dalton-Morgan J, Diffey S, Raman R, Alamery S, Edwards D, Batley J (2014a) SNP markers-based map construction and genome-wide linkage analysis in Brassica napus. Plant Biotechnology Journal 12, 851–860.
SNP markers-based map construction and genome-wide linkage analysis in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSrtL%2FK&md5=1dc52472df97ca1a347d6b78168987beCAS | 24698362PubMed |

Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N, Diffey S, Kadkol G, Edwards D, McCully M, Ruperao P, Parkin IAP, Batley J, Luckett DJ, Wratten N (2014b) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS One 9, e101673
Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 25006804PubMed |

Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis ES, Balasubramanian S (2016) Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant, Cell & Environment
Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola.Crossref | GoogleScholarGoogle Scholar |

Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133, 251–261.
The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFanu7k%3D&md5=d0bde572a506b7df078aca49fe2536ffCAS | 16339187PubMed |

Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao JY, Meng JL (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182, 851–861.
Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSqt7jO&md5=0edc21a04993000f56c21960ae5bfce8CAS |

Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breeding 123, 1–8.
Molecular markers in Brassica oilseed breeding: current status and future possibilities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtF2msLs%3D&md5=cd2b9890043d18107d7f96ea481498c2CAS |

Sundaresan V (2005) Control of seed size in plants. Proceedings of the National Academy of Sciences of the United States of America 102, 17887–17888.
Control of seed size in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlersr7N&md5=18b7d7a21899686fe21d3569aacebec0CAS | 16330781PubMed |

Tollenaere R, Hayward A, Dalton-Morgan J, Campbell E, Lee JRM, Lorenc M, Manoli S, Stiller J, Raman R, Raman H, Edwards D, Batley J (2012) Identification and characterization of candidate Rlm4 blackleg resistance genes in Brassica napus using next-generation sequencing. Plant Biotechnology Journal 10, 709–715.
Identification and characterization of candidate Rlm4 blackleg resistance genes in Brassica napus using next-generation sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWgu77P&md5=0dddc274c6cb64086de553c11e5e99cfCAS | 22726421PubMed |

Udall J, Quijada P, Lambert B, Osborn T (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theoretical and Applied Genetics 113, 597–609.
Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1yjsbw%3D&md5=c78fd08d9ac6a0f8ba726ad5b37d0942CAS | 16767446PubMed |

Verbyla AP, Cullis BR, Thompson R (2007) The analysis of QTL by simultaneous use of the full linkage map. Theoretical and Applied Genetics 116, 95–111.
The analysis of QTL by simultaneous use of the full linkage map.Crossref | GoogleScholarGoogle Scholar | 17952402PubMed |

Verbyla AP, Taylor JD, Verbyla KL (2012) RWGAIM: an efficient high-dimensional random whole genome average (QTL) interval mapping approach. Genetical Research 94, 291–306.
RWGAIM: an efficient high-dimensional random whole genome average (QTL) interval mapping approach.Crossref | GoogleScholarGoogle Scholar |

Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J (2009) The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evolutionary Biology 9, 271
The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks.Crossref | GoogleScholarGoogle Scholar | 19939256PubMed |

Wang N, Qian W, Suppanz I, Wei L, Mao B, Long Y, Meng J, Muller AE, Jung C (2011a) Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. Journal of Experimental Botany 62, 5641–5658.
Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCit7zP&md5=307986506d8ed70f007cac6decbd771aCAS | 21862478PubMed |

Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Chris Pires J, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park B-S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim J-S, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S-J, Choi S-R, Lee T-H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011b) The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics 43, 1035–1039.
The genome of the mesopolyploid crop species Brassica rapa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gtrbL&md5=121206142a7db658e2616a5a25336bddCAS | 21873998PubMed |

Zhang S, Liao X, Zhang C, Xu H (2012) Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Industrial Crops and Products 40, 27–32.
Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.).Crossref | GoogleScholarGoogle Scholar |

Zhou Q-H, Fu D-H, Mason AS, Zeng Y-J, Zhao C-X, Huang Y-J (2014) In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus. Molecular Breeding 33, 881–894.
In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus.Crossref | GoogleScholarGoogle Scholar |