Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

New eSSR and gSSR markers added to Australian barley maps

Kerrie L. Willsmore A , Paul Eckermann B , Rajeev K. Varshney E , Andreas Graner C , Peter Langridge D , Margaret Pallotta D , Judy Cheong A and Kevin J. Williams A F
+ Author Affiliations
- Author Affiliations

A Molecular Plant Breeding CRC, South Australian Research & Development Institute, GPO Box 397, Adelaide, SA 5001, Australia.

B University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia.

C International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, AP - 502 324, India.

D Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany.

E Australian Centre for Plant Functional Genomics, PMB 1, Glen Osmond, SA 5064, Australia.

F Corresponding author. Email:williams.kevin@saugov.sa.gov.au

Australian Journal of Agricultural Research 57(9) 953-959 https://doi.org/10.1071/AR05384
Submitted: 8 November 2005  Accepted: 13 April 2006   Published: 30 August 2006

Abstract

To enhance genetic maps of barley previously developed in Australia for identifying markers useable in molecular breeding, a new set of simple sequence repeat (SSR) and indel markers was added to the maps. These markers were developed through (i) database mining of barley expressed sequence tag (EST) sequences, (ii) comparative barley-rice genome analysis, and (iii) screening of a genomic library with SSR probes. The primer set selected for this study comprised 216 EST-SSR (eSSR) and 25 genomic SSR (gSSR) markers, which were screened for polymorphism on 4 doubled haploid (DH) or recombinant inbred line (RIL) populations. In total, 81 new markers were added to the maps, with good coverage on all 7 chromosomes, except 6H, which only had 2 new markers added. The marker order of previously published maps was re-evaluated by comparing recombination fractions calculated by 2 methods to discover the best position for each marker. The new SSR markers were then added to the updated maps. Several of these new markers are linked to important barley disease resistance genes such as those for cereal cyst nematode, spot form of net blotch, and leaf scald resistance, and are readily useable for marker-assisted barley breeding. The new maps are available on-line at www.genica.net.au.

Additional keywords: microsatellite, Hordeum vulgare, genetic mapping, marker-assisted selection.


References


Barr AR, Jefferies SP, Broughton S, Chalmers KJ, Kretschmer JM, Boyd WJR, Collins HM, Roumeliotis S, Logue SJ, Coventry SJ, Moody DB, Read BJ, Poulsen D, Lance RCM, Platz GJ, Park RF, Panozzo JF, Karakousis A, Lim P, Verbyla AP, Eckermann PJ (2003b) Mapping and QTL analysis of the barley population Alexis A- Sloop. Australian Journal of Agricultural Research 54, 1117–1123.
Crossref | GoogleScholarGoogle Scholar | open url image1

Barr AR, Karakousis A, Lance RCM, Logue SJ, Manning S, Chalmers KJ, Kretschmer JM, Boyd WJR, Collins HM, Roumeliotis S, Coventry SJ, Moody DB, Read BJ, Poulsen D, Li CD, Platz GJ, Inkerman PA, Panozzo JF, Cullis BR, Smith AB, Lim P, Langridge P (2003a) Mapping and QTL analysis of the barley population Chebec A- Harrington. Australian Journal of Agricultural Research 54, 1125–1130.
Crossref | GoogleScholarGoogle Scholar | open url image1

Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theoretical and Applied Genetics 83, 250–256.
Crossref | GoogleScholarGoogle Scholar | open url image1

Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34, 437–447. open url image1

Karakousis A, Barr AR, Kretschmer JM, Manning S, Jefferies SP, Chalmers KJ, Islam AKM, Langridge P (2003b) Mapping and QTL analysis of the barley population Clipper A- Sahara. Australian Journal of Agricultural Research 54, 1137–1140.
Crossref | GoogleScholarGoogle Scholar | open url image1

Karakousis A, Barr AR, Kretschmer JM, Manning S, Logue SJ, Roumeliotis S, Collins HM, Chalmers KJ, Li CD, Lance RCM, Langridge P (2003a) Mapping and QTL analysis of the barley population Galleon A- Haruna Nijo. Australian Journal of Agricultural Research 54, 1131–1136.
Crossref | GoogleScholarGoogle Scholar | open url image1

Karakousis A, Gustafson JP, Chalmers KJ, Barr AR, Langridge P (2003c) A consensus map of barley integrating SSR, RFLP, and AFLP markers. Australian Journal of Agricultural Research 54, 1173–1185.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kosambi DD (1944) The estimation of map distances from recombination values. Annals of Eugenics 12, 172–175. open url image1

Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER, an interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics 1, 174–181.
Crossref | GoogleScholarGoogle Scholar | open url image1

Langridge P, Barr A (2003) Preface. Australian Journal of Agricultural Research 54, i–iv.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lehmensiek A, Eckermann PJ, Verbyla AP, Appels R, Sutherland MW, Daggard GE (2005) Curation of wheat maps to improve map accuracy and QTL detection. Australian Journal of Agricultural Research 56, 1347–1354. open url image1

Li JZ, Sjakste TG, Roder MS, Ganal MW (2003) Development and genetic mapping of 127 new microsatellite markers in barley. Theoretical and Applied Genetics 107, 1021–1027.
Crossref | GoogleScholarGoogle Scholar | open url image1

Manly KF, Cudmore RH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mammalian Genome 12, 930–932.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pillen K, Binder A, Kreuzkam B, Ramsey L, Waugh R, Forster J, Leon J (2000) Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theoretical and Applied Genetics 101, 652–660.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ramsay L, Macaulay M, degli Ivanissevich S, Maclean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156, 1997–2005. open url image1

Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Svensson JT, Wanamaker S, Walia H, Rodriguez E, Hedley PE, Liu H, Close TJ, Marshall DF, Waugh R (2006) Single nucleotide polymorphism discovery in barley facilitates development of an integrated linkage map and identifies regions of conserved gene order in barley and rice. Molecular Genetics and Genomics (In press) , open url image1

Thiel T, Michalek W, Varsheny RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L). Theoretical and Applied Genetics 106, 411–422. open url image1

Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers, their characteristics, development and application to plant breeding and genetics. Trends in Biotechnology 23, 48–55.
Crossref | GoogleScholarGoogle Scholar | open url image1

Varshney RK , Prasad M , Graner A (2004) Molecular marker maps of barley, a resource for intra- and interspecific genomics. In ‘Molecular markers in improvement of agriculture and forestry’. (Eds G Wenzel, L Horst) pp. 229–243. (Springer Verlag: Germany)

Voorrips RE (2002) MapChart, Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93, 77–78.
Crossref | GoogleScholarGoogle Scholar | open url image1

Williams KJ, Lichon A, Gianquitto P, Kretschmer JM, Karakousis A, Manning S, Langridge P, Wallwork H (1999) Identification and mapping of a gene conferring resistance to the spot form of net blotch (Pyrenophera teres f.maculata) in barley. Theoretical and Applied Genetics 99, 323–327.
Crossref | GoogleScholarGoogle Scholar | open url image1