Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Cocrystals and Salts of 3,5-Bis(pyridinylmethylene)piperidin-4-one with Aromatic Poly-Carboxylates and Resorcinols: Influence of Stacking Interactions on Solid-State Luminescence Properties

Debarati Das A and Kumar Biradha A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.

B Corresponding author. Email: kbiradha@chem.iitkgp.ac.in

Australian Journal of Chemistry 72(10) 742-750 https://doi.org/10.1071/CH19062
Submitted: 7 February 2019  Accepted: 16 April 2019   Published: 17 May 2019

Abstract

Two bis-pyridyl-substituted α,β-unsaturated ketones were shown to form complexes with carboxylic acids and resorcinol derivatives. The neutral acid–acid homosynthon was observed in only one complex out of the five acid-bis-pyridyl containing complexes studied here, while the –COO⋯HOOC– synthon was found to be dominant as it was observed in four complexes. The carboxylates self-assembled to form discrete dimeric, anionic, 1D chains and also exhibited mixed ionic hydrogen bonds. On the other hand, resorcinol derivatives displayed O–H⋯N hydrogen bonding to form tetrameric aggregates of bis-pyridyl ketone molecules and respective co-formers, while 3,5-dihydroxy benzoic acid (DHBA) molecules formed 1D chains by clipping two molecules of ketones with three DHBA molecules. Such clipping by the resorcinol derivatives promoted continuous π–π stacking interactions. Consequently, these materials emitted at higher wavelengths compared with the parent bis-pyridyl-substituted α,β-unsaturated ketones.


References

[1]  G. R. Desiraju, Crystal Engineering: The Design of Organic Solids 1989 (Elsevier Science Publishers B. V.: Amsterdam).

[2]  M. J. Zaworotko, Chem. Commun. 2001, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  F. Diederich, M. Gómez-López, Chem. Soc. Rev. 1999, 28, 263.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  L. Maggini, D. Bonifazi, Chem. Soc. Rev. 2012, 41, 211.
         | Crossref | GoogleScholarGoogle Scholar | 21748186PubMed |

[5]  D. B. Amabilino, J. F. Stoddart, Pure Appl. Chem. 1993, 65, 2351.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  G. Zhang, M. Mastalerz, Chem. Soc. Rev. 2014, 43, 1934.
         | Crossref | GoogleScholarGoogle Scholar | 24336604PubMed |

[7]  M. Wenzel, J. R. Hiscock, P. A. Gale, Chem. Soc. Rev. 2012, 41, 480.
         | Crossref | GoogleScholarGoogle Scholar | 22080279PubMed |

[8]  G. W. Gokel, L. J. Barbour, R. Ferdani, J. Hu, Acc. Chem. Res. 2002, 35, 878.
         | Crossref | GoogleScholarGoogle Scholar | 12379140PubMed |

[9]  K. Biradha, R. Santra, Chem. Soc. Rev. 2013, 42, 950.
         | Crossref | GoogleScholarGoogle Scholar | 23223680PubMed |

[10]  J. W. Lauher, F. W. Fowler, N. S. Goroff, Acc. Chem. Res. 2008, 41, 1215.
         | Crossref | GoogleScholarGoogle Scholar | 18712885PubMed |

[11]  B. R. Bhogala, B. Captain, A. Parthasarathy, V. Ramamurthy, J. Am. Chem. Soc. 2010, 132, 13434.
         | Crossref | GoogleScholarGoogle Scholar | 20815400PubMed |

[12]  T. Friščić, L. R. MacGillivray, Chem. Commun. 2005, 5748.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  D. J. Cram, J. M. Cram, Science 1974, 183, 803.
         | 17780761PubMed |

[14]  M. Zhang, X. Yan, F. Huang, Z. Niu, H. W. Gibson, Acc. Chem. Res. 2014, 47, 1995.
         | Crossref | GoogleScholarGoogle Scholar | 24804805PubMed |

[15]  Y. Wan, H. Yang, D. Zhao, Acc. Chem. Res. 2006, 39, 423.
         | Crossref | GoogleScholarGoogle Scholar | 16846206PubMed |

[16]  J. J. Rebek, Chem. Commun. 2000, 637.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. J. Webber, R. Langer, Chem. Soc. Rev. 2017, 46, 6600.
         | Crossref | GoogleScholarGoogle Scholar | 28828455PubMed |

[18]  D. Tan, L. Lootsa, T. Friščić, Chem. Commun. 2016, 52, 7760.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  D.-S. Guo, Y. Liu, Acc. Chem. Res. 2014, 47, 1925.
         | Crossref | GoogleScholarGoogle Scholar | 24666259PubMed |

[20]  C. B. Aakeröey, D. J. Salmon, CrystEngComm 2005, 7, 439.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S. K. McNeil, S. P. Kelley, C. Beg, H. Cook, R. D. Rogers, D. E. Nikles, ACS Appl. Mater. Interfaces 2013, 5, 7647.
         | Crossref | GoogleScholarGoogle Scholar | 23859489PubMed |

[22]  W. W. Porter, S. C. Elie, A. J. Matzger, Cryst. Growth Des. 2008, 8, 14.
         | Crossref | GoogleScholarGoogle Scholar | 19367342PubMed |

[23]  D. Braga, F. Grepioni, Chem. Commun. 2005, 3635.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  S. Bhattacharya, B. K. Saha, Cryst. Growth Des. 2011, 11, 2194.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  S. K. Park, S. Varghese, J. H. Kim, S.-J. Yoon, O. K. Kwon, B.-K. An, J. Gierschner, S. Y. Park, J. Am. Chem. Soc. 2013, 135, 4757.
         | Crossref | GoogleScholarGoogle Scholar | 23458412PubMed |

[26]  H. Wu, Y. Zhou, L. Yin, C. Hang, X. Li, H. Ågren, T. Yi, Q. Zhang, L. Zhu, J. Am. Chem. Soc. 2017, 139, 785.
         | Crossref | GoogleScholarGoogle Scholar | 28027639PubMed |

[27]  M. Paul, S. Chakraborty, G. R. Desiraju, J. Am. Chem. Soc. 2018, 140, 2309.
         | Crossref | GoogleScholarGoogle Scholar | 29353480PubMed |

[28]  G. R. Desiraju, Angew. Chem. Int. Ed. 2007, 46, 8342.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. W. Hosseini, Chem. Commun. 2005, 47, 5825.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  B. K. Saha, S. Bhattacharya, CrystEngComm 2010, 12, 2369.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  S. M. Berge, L. D. Bighley, D. C. Monkhouse, J. Pharm. Sci. 1977, 66, 1.
         | Crossref | GoogleScholarGoogle Scholar | 833720PubMed |

[32]  G. S. Paulekuhn, J. B. Dressman, C. Saal, J. Med. Chem. 2007, 50, 6665.
         | Crossref | GoogleScholarGoogle Scholar | 18052022PubMed |

[33]  D. L. Prohotsky, F. Zhaoa, J. Pharm. Sci. 2012, 101, 1.
         | Crossref | GoogleScholarGoogle Scholar | 21905029PubMed |

[34]  S. Chen, Y. Yuan, L. Pan, S. Xu, H. Xia, L. Yuan, Cryst. Growth Des. 2009, 9, 874.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  K. Suresh, A. Nangia, Cryst. Growth Des. 2014, 14, 2945.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  R. Santra, K. Biradha, Cryst. Growth Des. 2009, 9, 4969.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  T. R. Shattock, P. Vishweshwar, Z. Wang, M. J. Zaworotko, Cryst. Growth Des. 2005, 5, 2046.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  S. S. A. Abidi, Y. Azim, A. K. Gupta, C. P. Pradeep, J. Mol. Struct. 2018, 1166, 202.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  A. Lemmerer, S. Govindraju, M. Johnston, X. Motloung, K. L. Savig, CrystEngComm 2015, 17, 3591.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  B. K. Adams, E. M. Ferstl, M. C. Davis, M. Herold, S. Kurtkaya, R. F. Camalier, M. G. Hollingshead, G. Kaur, E. A. Sausville, F. R. Rickles, J. P. Snyder, D. C. Loitta, M. Shoji, Bioorg. Med. Chem. 2004, 12, 3871.
         | Crossref | GoogleScholarGoogle Scholar | 15210154PubMed |

[41]  P. Lagisetty, P. Vilekar, K. Sahoo, S. Anant, V. Awasthi, Bioorg. Med. Chem. 2010, 18, 6109.
         | Crossref | GoogleScholarGoogle Scholar | 20638855PubMed |

[42]  K. W. Short, T. L. Kinnibrugh, D. M. Sammeth, T. V. Timofeeva, Proc. SPIE 2009, 7164, 716411.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  L.-D. Liu, S.-L. Liu, Z.-X. Liu, G.-G. Hou, J. Mol. Struct. 2016, 1112, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  H.-J. Li, L. Wang, J.-J. Zhao, J.-F. Sun, J.-L. Sun, C.-H. Wang, G.-G. Hou, J. Mol. Struct. 2015, 1079, 414.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  S. Mohamed, D. A. Tocher, M. Vickers, P. G. Karamertzanis, S. L. Price, Cryst. Growth Des. 2009, 9, 2881.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  P. Vishweshwar, A. Nangia, V. M. Lynch, J. Org. Chem. 2002, 67, 556.
         | Crossref | GoogleScholarGoogle Scholar | 11798330PubMed |

[47]  S. Roy, S. P. Mondal, S. K. Ray, K. Biradha, Angew. Chem. Int. Ed. 2012, 51, 12012.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  L. R. MacGillivray, J. L. Reid, J. A. Ripmeester, J. Am. Chem. Soc. 2000, 122, 7817.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  R. Santra, K. Biradha, CrystEngComm 2008, 10, 1524.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  R. Santra, K. Biradha, CrystEngComm 2011, 13, 3246.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  E. S. Leonova, M. V. Makarov, E. Y. Rybalkina, S. L. Nayani, P. Tongwa, A. Fonari, T. V. Timofeeva, I. L. Odinets, Eur. J. Med. Chem. 2010, 45, 5926.
         | Crossref | GoogleScholarGoogle Scholar | 21035234PubMed |

[52]  D. Das, K. Biradha, Inorg. Chem. Front. 2017, 4, 1365.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  ChemAxon, MarvinSketch (version 17.13.0) 2008 (ChemAxon: Budapest). Available at http://www.chemaxon.com

[54]  G. M. Sheldrick, SHELXL-2014 2014 (University of Göttingen: Göttingen).