Assembly, Structure, and Properties of Six Coordination Polymers Based on 1,3,5-Tri-4-pyridyl-1,2-ethenylbenzene
Chen Cao A B , Tian-Yi Gu A , Jian-Guo Zhang A , Ming Dai C , Chun-Yan Ni A E , Zhi-Gang Yao D E and Jian-Ping Lang A B EA College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
B State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
C Suzhou Clean Environment Institute, Jiangsu Sujing Group Co., Ltd, Suzhou 215122, China.
D Analysis and Testing Center, Soochow University, Suzhou 215123, China.
E Corresponding authors. Email: chunyan89.ok@163.com; zhgyao@suda.edu.cn; jplang@suda.edu.cn
Australian Journal of Chemistry 72(10) 751-761 https://doi.org/10.1071/CH19178
Submitted: 20 April 2019 Accepted: 31 May 2019 Published: 21 June 2019
Abstract
Six coordination polymers including [Cd(tpeb)X2]n (1: X = Br, 2: X = I), [Cu(tpeb)I]n (3), [Cd2I2(tpeb)2(1,4-bdc)]n (4), {[Co(tpeb)(dpa)]·MeCN}n (5), and {[Ni2(tpeb)3(oba)2]·solvent}n (6) were prepared from solvothermal reactions of 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene (tpeb) with CdII, CuI, CoII, or NiII salts in the absence or presence of 1,4-benzenedicarboxylic acid (1,4-H2bdc), 2,2′-biphenyldicarboxylic acid (H2dpa), and 4,4′-oxybisbenzoic acid (H2oba). Compounds 1–3 have 1D chain structures while 4 holds a 2D wave-like network. Compound 5 adopts a 3D (3,5)-connected net with a Schläfli symbol of 33.48.513.63.7 and 6 possesses a 3D 5-connected net with a Schläfli symbol of 42.65.7.82. Compound 2 as a representative photocatalyst shows efficient degradation of rhodamine B in water while 5 displays highly selective sensing of p-nitrophenol in water through fluorescence quenching.
References
[1] B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1989, 111, 5962.| Crossref | GoogleScholarGoogle Scholar |
[2] S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 1460.
| Crossref | GoogleScholarGoogle Scholar |
[3] H. L. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature 1999, 402, 276.
| Crossref | GoogleScholarGoogle Scholar |
[4] B. F. Abrahams, S. R. Batten, M. J. Grannas, H. Hamit, B. F. Hoskins, R. Robson, Angew. Chem. Int. Ed. 1999, 38, 1475.
| Crossref | GoogleScholarGoogle Scholar |
[5] D. Liu, Z. G. Ren, H. X. Li, J. P. Lang, N. Y. Li, B. F. Abrahams, Angew. Chem. Int. Ed. 2010, 49, 4767.
| Crossref | GoogleScholarGoogle Scholar |
[6] B. Li, H. M. Wen, Y. Cui, W. Zhou, G. Qian, B. Chen, Adv. Mater. 2016, 28, 8819.
| Crossref | GoogleScholarGoogle Scholar | 27454668PubMed |
[7] X. H. Bu, J. L. Zuo, Sci. China Chem. 2016, 59, 927.
| Crossref | GoogleScholarGoogle Scholar |
[8] F. L. Li, Q. Shao, X. Huang, J. P. Lang, Angew. Chem. Int. Ed. 2018, 57, 1888.
| Crossref | GoogleScholarGoogle Scholar |
[9] T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982.
| Crossref | GoogleScholarGoogle Scholar | 24769551PubMed |
[10] F. L. Hu, Y. Mi, C. Zhu, B. F. Abrahams, P. Braunstein, J. P. Lang, Angew. Chem. Int. Ed. 2018, 57, 12696.
| Crossref | GoogleScholarGoogle Scholar |
[11] C. Cao, S. J. Liu, S. L. Yao, T. F. Zheng, Y. Q. Chen, J. L. Chen, H. R. Wen, Cryst. Growth Des. 2017, 17, 4757.
| Crossref | GoogleScholarGoogle Scholar |
[12] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105.
| Crossref | GoogleScholarGoogle Scholar | 22070233PubMed |
[13] Z. C. Shao, M. J. Liu, J. Dang, C. Huang, W. J. Xu, J. Wu, H. W. Hou, Inorg. Chem. 2018, 57, 10224.
| Crossref | GoogleScholarGoogle Scholar |
[14] Q. Gao, J. Xu, X. H. Bu, Coord. Chem. Rev. 2019, 378, 17.
| Crossref | GoogleScholarGoogle Scholar |
[15] C. C. Wang, J. R. Li, X. L. Lv, Y. Q. Zhang, G. S. Guo, Energy Environ. Sci. 2014, 7, 2831.
| Crossref | GoogleScholarGoogle Scholar |
[16] F. Wang, F. L. Li, M. M. Xu, H. Yu, J. G. Zhang, H. T. Xia, J. P. Lang, J. Mater. Chem. A 2015, 3, 5908.
| Crossref | GoogleScholarGoogle Scholar |
[17] W. P. Lustig, S. Mukherjee, Z. N. Rudd, A. V. Desai, J. Li, S. K. Ghosh, Chem. Soc. Rev. 2017, 46, 3242.
| Crossref | GoogleScholarGoogle Scholar | 28462954PubMed |
[18] S. Li, Q. Xu, Energy Environ. Sci. 2013, 6, 1656.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. Q. Li, Y. F. Chen, X. K. Pei, S. H. Zhang, X. Feng, J. W. Zhou, B. Wang, Chin. J. Chem. 2016, 34, 175.
| Crossref | GoogleScholarGoogle Scholar |
[20] M. M. Chen, H. X. Li, J. P. Lang, Eur. J. Inorg. Chem. 2016, 2508.
| Crossref | GoogleScholarGoogle Scholar |
[21] Y. Q. Chen, S. J. Liu, Y. W. Li, G. R. Li, K. H. He, Y. K. Qu, T. L. Hu, X. H. Bu, Cryst. Growth Des. 2012, 12, 5426.
| Crossref | GoogleScholarGoogle Scholar |
[22] X. W. Lei, C. Y. Yue, J. Q. Zhao, Y. F. Han, J. T. Yang, R. R. Meng, C. S. Gao, H. Ding, C. Y. Wang, W. D. Chen, M. C. Hong, Inorg. Chem. 2015, 54, 10593.
| Crossref | GoogleScholarGoogle Scholar | 26505902PubMed |
[23] D. X. Li, C. Y. Ni, M. M. Chen, M. Dai, W. H. Zhang, W. Y. Yan, H. X. Qi, Z. G. Ren, J. P. Lang, CrystEngComm 2014, 16, 2158.
| Crossref | GoogleScholarGoogle Scholar |
[24] Y. P. Wu, X. Q. Wu, J. F. Wang, J. Zhao, W. W. Dong, D. S. Li, Q. C. Zhang, Cryst. Growth Des. 2016, 16, 2309.
| Crossref | GoogleScholarGoogle Scholar |
[25] W. Meng, Z. Q. Xu, J. Ding, D. Q. Wu, X. Han, H. W. Hou, Y. T. Fan, Cryst. Growth Des. 2014, 14, 730.
| Crossref | GoogleScholarGoogle Scholar |
[26] M. M. Liu, G. Li, Z. H. Cheng, New J. Chem. 2015, 39, 8484.
| Crossref | GoogleScholarGoogle Scholar |
[27] Y. F. Zhang, X. J. Bo, A. Nsabimana, C. Han, M. Li, L. P. Guo, J. Mater. Chem. A 2015, 3, 732.
| Crossref | GoogleScholarGoogle Scholar |
[28] L. E. Kreno, N. G. Greenelth, O. K. Farha, J. T. Hupp, R. P. V. Duyne, Analyst 2014, 139, 4073.
| Crossref | GoogleScholarGoogle Scholar | 24949495PubMed |
[29] Y. Li, S. S. Zhang, D. T. Song, Angew. Chem. 2013, 125, 738.
| Crossref | GoogleScholarGoogle Scholar |
[30] S. L. Yao, S. J. Liu, X. M. Tian, T. F. Zheng, C. Cao, C. Y. Niu, Y. Q. Chen, J. L. Chen, H. P. Huang, H. R. Wen, Inorg. Chem. 2019, 58, 3578.
| Crossref | GoogleScholarGoogle Scholar | 30821447PubMed |
[31] T. Zhang, W. B. Li, Chem. Soc. Rev. 2014, 43, 5982.
| Crossref | GoogleScholarGoogle Scholar | 24769551PubMed |
[32] Y. B. Huang, J. Liang, X. S. Wang, R. Cao, Chem. Soc. Rev. 2017, 46, 126.
| Crossref | GoogleScholarGoogle Scholar | 27841411PubMed |
[33] B. L. Chen, S. C. Xiang, G. D. Qian, Acc. Chem. Res. 2010, 43, 1115.
| Crossref | GoogleScholarGoogle Scholar |
[34] D. Liu, J. P. Lang, B. F. Abrahams, J. Am. Chem. Soc. 2011, 133, 11042.
| Crossref | GoogleScholarGoogle Scholar | 21718000PubMed |
[35] F. L. Hu, Y. Mi, C. Zhu, B. F. Abrahams, P. Braunstein, J. P. Lang, Angew. Chem. Int. Ed. 2018, 57, 12696.
| Crossref | GoogleScholarGoogle Scholar |
[36] M. H. Mir, J. X. Ong, G. K. Kole, G. K. Tan, M. J. McGlinchey, Y. Wu, J. J. Vittal, Chem. Commun. 2011, 47, 11633.
| Crossref | GoogleScholarGoogle Scholar |
[37] Y. Liu, K. Q. Ye, Y. Wang, Q. C. Zhang, X. H. Bu, P. Y. Feng, Dalton Trans. 2017, 46, 1481.
| Crossref | GoogleScholarGoogle Scholar | 28074203PubMed |
[38] T. Y. Gu, M. Dai, D. J. Young, Z. G. Ren, J. P. Lang, Inorg. Chem. 2017, 56, 4668.
| Crossref | GoogleScholarGoogle Scholar |
[39] J. G. Zhang, W. J. Gong, Y. S. Guan, H. X. Li, D. J. Young, J. P. Lang, Cryst. Growth Des. 2018, 18, 6172.
| Crossref | GoogleScholarGoogle Scholar |
[40] G. M. J. Schmidt, J. Pure Appl. Chem. 1971, 27, 647.
| Crossref | GoogleScholarGoogle Scholar |
[41] A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
| Crossref | GoogleScholarGoogle Scholar |
[42] S. L. Wang, F. L. Hu, J. Y. Zhou, Y. Zhou, Q. Huang, J. P. Lang, Cryst. Growth Des. 2015, 15, 4087.
| Crossref | GoogleScholarGoogle Scholar |
[43] Y. P. Xiang, Y. B. Zhao, N. Xu, S. L. Gong, F. Ni, K. L. Wu, J. J. Luo, G. H. Xie, Z. H. Lu, C. L. Yang, J. Mater. Chem. C 2017, 5, 12204.
| Crossref | GoogleScholarGoogle Scholar |
[44] M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
| Crossref | GoogleScholarGoogle Scholar | 19384441PubMed |
[45] C. N. Lv, M. M. Chen, W. H. Zhang, D. X. Li, M. Dai, J. P. Lang, CrystEngComm 2015, 17, 1935.
| Crossref | GoogleScholarGoogle Scholar |
[46] T. T. Liu, T. T. Hu, C. J. Hu, J. P. Lang, Inorg. Chem. Commun. 2018, 90, 26.
| Crossref | GoogleScholarGoogle Scholar |
[47] C. C. Chen, W. H. Ma, J. C. Zhao, Chem. Soc. Rev. 2010, 39, 4206.
| Crossref | GoogleScholarGoogle Scholar |
[48] M. Li, L. Liu, L. Zhang, X. F. Lv, J. H. Ding, W. Hou, Y. T. Fan, CrystEngComm 2014, 16, 6408.
| Crossref | GoogleScholarGoogle Scholar |
[49] Z. C. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815.
| Crossref | GoogleScholarGoogle Scholar |
[50] G. Y. Wang, C. Song, D. M. Kong, W. J. Ruan, Z. Chang, Y. Li, J. Mater. Chem. A 2014, 2, 2213.
| Crossref | GoogleScholarGoogle Scholar |
[51] Y. T. Yan, W. Y. Zhang, F. Zhang, F. Cao, R. F. Yang, Y. Y. Wang, L. Hou, Dalton Trans. 2018, 47, 1682.
| Crossref | GoogleScholarGoogle Scholar | 29327748PubMed |
[52] X. J. Liu, X. Wang, J. L. Xu, D. Tian, R. Y. Chen, J. Xu, X. H. Bu, Dalton Trans. 2017, 46, 4893.
| Crossref | GoogleScholarGoogle Scholar | 28304037PubMed |
[53] A. J. Amoroso, A. M. W. Thompson, C. J. P. Maher, J. A. McCleverty, M. D. Ward, Inorg. Chem. 1995, 34, 4828.
| Crossref | GoogleScholarGoogle Scholar |
[54] C. B. Hubschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281.
| Crossref | GoogleScholarGoogle Scholar |