Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Metalloligand Strategies for Assembling Heteronuclear Nanocages – Recent Developments*

Feng Li A C and Leonard F. Lindoy B C
+ Author Affiliations
- Author Affiliations

A School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.

B School of Chemistry, F11, The University of Sydney, Sydney, NSW 2006, Australia.

C Corresponding authors. Email: feng.li@westernsydney.edu.au; len.lindoy@sydney.edu.au




Feng Li obtained his B.Sc. (1999) and M.Sc. (2002) at Zhengzhou University, China. In 2006, he completed his Ph.D. in the Instituto de Tecnologia Química e Biológica (ITQB) at the Universidade Nova de Lisboa (UNL), Portugal. In 2007, he took up a post-doctoral position at the University of Sydney (2007–2012), where he carried out research in the areas of metallo-supramolecular chemistry and inorganic materials chemistry. In 2012, he was appointed to a permanent lecturership in chemistry at Western Sydney University (WSU). In 2015, he was promoted to Senior Lecturer. His expertise spans experimental and theoretical supramolecular chemistry, synthetic organic chemistry, and coordination chemistry with emphasis on molecular recognition and magnetism.



Leonard F. Lindoy is an Emeritus Professor at the University of Sydney. He obtained his B.Sc. (1964), Ph.D. (1968), and D.Sc. (1992) from the University of New South Wales. Following a post-doctoral appointment at Ohio State University, he joined James Cook University (1970) and in 1996 moved to the Chair of Inorganic Chemistry at Sydney. Len is a Fellow of the Australian Academy of Science, a Senior Member of Robinson College, Cambridge, and has been awarded honorary doctorates by the Universities of Wollongong (NSW) and Edinburgh (UK). He holds Honorary/Guest Professorships at East China University of Science and Technology, Guizhou Normal University, and Guizhou University.

Australian Journal of Chemistry 72(10) 731-741 https://doi.org/10.1071/CH19279
Submitted: 19 June 2019  Accepted: 29 July 2019   Published: 20 August 2019

Abstract

The use of metalloligands as building blocks for the assembly of metallo-organic cages has received increasing attention over the past two decades or so. In part, the popularity of this approach reflects its stepwise nature that lends itself to the predesigned construction of metallocages and especially heteronuclear metallocages. The focus of the present discussion is on the use of metalloligands for the construction of discrete polyhedral cages, very often incorporating heterometal ions as structural elements. The metalloligand approach uses metal-bound multifunctional ligand building blocks that display predesigned structural properties for coordination to a second metal ion such that the rational design and construction of both homo- and heteronuclear metal–organic cages are facilitated. The present review covers published literature in the area from early 2015 to early 2019.


References

[1]  N. B. Debata, D. Tripathy, H. S. Sahoo, Coord. Chem. Rev. 2019, 387, 273.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. Pan, K. Wu, J. H. Zhang, C. Y. Su, Coord. Chem. Rev. 2019, 378, 333.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  H. S. Scott, R. W. Staniland, P. E. Kruger, Coord. Chem. Rev. 2018, 362, 24.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. D. Ward, C. A. Hunter, N. H. Williams, Acc. Chem. Res. 2018, 51, 2073.
         | Crossref | GoogleScholarGoogle Scholar | 30085644PubMed |

[5]  P. M. Bogie, T. F. Miller, R. J. Hooley, Isr. J. Chem. 2019, 59, 130.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  R. W. Hogue, S. Singh, S. Brooker, Chem. Soc. Rev. 2018, 47, 7303.
         | Crossref | GoogleScholarGoogle Scholar | 30124687PubMed |

[7]  D. Zhang, T. K. Ronson, J. R. Nitschke, Acc. Chem. Res. 2018, 51, 2423.
         | Crossref | GoogleScholarGoogle Scholar | 30207688PubMed |

[8]  A. J. Brock, J. K. Clegg, F. Li, L. F. Lindoy, Coord. Chem. Rev. 2018, 375, 106.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  S. Pullen, G. H. Clever, Acc. Chem. Res. 2018, 51, 3052.
         | Crossref | GoogleScholarGoogle Scholar | 30379523PubMed |

[10]  L. F. Lindoy, J. Incl. Phenom. Macrocycl. Chem. 2019, 94, 121.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  Z. X. Wu, K. Zhou, A. V. Ivanov, M. Yusobov, F. Verpoort, Coord. Chem. Rev. 2017, 353, 180.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  L. J. Chen, H. B. Yang, M. Shionoya, Chem. Soc. Rev. 2017, 46, 2555.
         | Crossref | GoogleScholarGoogle Scholar | 28452389PubMed |

[13]  A. J. McConnell, Supramol. Chem. 2018, 30, 858.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  A. Brock, H. Al-Fayaad, M. C. Pfrunder, J. K. Clegg, in Solid-State Supramolecular Materials (Ed. F. R. Banerjee) 2017, Ch. 10, pp. 325–387 (RSC: London).

[15]  R. A. S. Vasdev, D. Preston, J. D. Crowley, Chem. Asian J. 2017, 12, 2513.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  T. R. Cook, P. J. Stang, Chem. Rev. 2015, 115, 7001.
         | Crossref | GoogleScholarGoogle Scholar | 25813093PubMed |

[17]  L. Chen, Q. Chen, M. Wu, F. Jiang, M. Hong, Acc. Chem. Res. 2015, 48, 201.
         | Crossref | GoogleScholarGoogle Scholar | 25517043PubMed |

[18]  L. Avram, Y. Cohen, Chem. Soc. Rev. 2015, 44, 586.
         | Crossref | GoogleScholarGoogle Scholar | 25110858PubMed |

[19]  A. M. Castilla, W. J. Ramsay, J. R. Nitschke, Acc. Chem. Res. 2014, 47, 2063.
         | Crossref | GoogleScholarGoogle Scholar | 24793652PubMed |

[20]  F. J. Rizzuto, L. K. S. von Krbek, J. R. Nitschke, Nat. Rev. Chem. 2019, 3, 204.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  X. Jing, C. He, L. Zhao, C. Duan, Acc. Chem. Res. 2019, 52, 100.
         | Crossref | GoogleScholarGoogle Scholar | 30586276PubMed |

[22]  R. Custelcean, Chem. Soc. Rev. 2014, 43, 1813.
         | Crossref | GoogleScholarGoogle Scholar | 24384869PubMed |

[23]  M. D. Ward, P. R. Raithby, Chem. Soc. Rev. 2013, 42, 1619.
         | Crossref | GoogleScholarGoogle Scholar | 22797247PubMed |

[24]  M. D. Pluth, K. N. Raymond, Chem. Soc. Rev. 2007, 36, 161.
         | Crossref | GoogleScholarGoogle Scholar | 17264920PubMed |

[25]  H. Amouri, C. Desmarets, J. Moussa, Chem. Rev. 2012, 112, 2015.
         | Crossref | GoogleScholarGoogle Scholar | 22251425PubMed |

[26]  W. Q. Xu, Y. Z. Fan, H. P. Wang, J. Teng, Y. H. Li, C. X. Chen, D. Fenske, J. J. Jiang, C. Y. Su, Chem. – Eur. J. 2017, 23, 3542.
         | Crossref | GoogleScholarGoogle Scholar | 28094459PubMed |

[27]  W. Cullen, S. Turega, C. A. Hunter, M. D. Ward, Chem. Sci. 2015, 6, 625.
         | Crossref | GoogleScholarGoogle Scholar | 28936311PubMed |

[28]  N. Ahmad, H. A. Younus, A. H. Chughtai, F. Verpoort, Chem. Soc. Rev. 2015, 44, 9.
         | Crossref | GoogleScholarGoogle Scholar | 25319756PubMed |

[29]  A. Galan, P. Ballester, Chem. Soc. Rev. 2016, 45, 1720.
         | Crossref | GoogleScholarGoogle Scholar | 26797259PubMed |

[30]  H. Vardhan, F. Verpoort, Adv. Synth. Catal. 2015, 357, 1351.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  W.-X. Gao, H.-N. Zhang, G.-X. Jin, Coord. Chem. Rev. 2019, 386, 69.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  V. Marti-Centelles, A. L. Lawrence, P. J. Lusby, J. Am. Chem. Soc. 2018, 140, 2862.
         | Crossref | GoogleScholarGoogle Scholar | 29406705PubMed |

[33]  W. Cullen, M. C. Misuraca, C. A. Hunter, N. H. Williams, M. D. Ward, Nat. Chem. 2016, 8, 231.
         | Crossref | GoogleScholarGoogle Scholar | 26892554PubMed |

[34]  C. Tan, D. Chu, X. Tang, Y. Liu, W. Xuan, Y. Cui, Chem. – Eur. J. 2019, 25, 662.
         | Crossref | GoogleScholarGoogle Scholar | 30076749PubMed |

[35]  C. M. Hong, R. G. Bergman, K. N. Raymond, F. D. Toste, Acc. Chem. Res. 2018, 51, 2447.
         | Crossref | GoogleScholarGoogle Scholar | 30272943PubMed |

[36]  P. S. Bols, H. L. Anderson, Acc. Chem. Res. 2018, 51, 2083.
         | Crossref | GoogleScholarGoogle Scholar | 30156831PubMed |

[37]  L. J. Jongkind, X. Caumes, A. P. T. Hartendorp, J. N. H. Reek, Acc. Chem. Res. 2018, 51, 2115.
         | Crossref | GoogleScholarGoogle Scholar | 30137959PubMed |

[38]  I. Sinha, P. S. Mukherjee, Inorg. Chem. 2018, 57, 4205.
         | Crossref | GoogleScholarGoogle Scholar | 29578701PubMed |

[39]  C. Deraedt, D. Astruc, Coord. Chem. Rev. 2016, 324, 106.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  M. Otte, ACS Catal. 2016, 6, 6491.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  M. D. Ward, C. A. Hunter, N. H. Williams, Chem. Lett. 2017, 46, 2.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  C. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015, 115, 3012.
         | Crossref | GoogleScholarGoogle Scholar | 25898212PubMed |

[43]  M. D. Pluth, R. G. Bergman, K. N. Raymond, Acc. Chem. Res. 2009, 42, 1650.
         | Crossref | GoogleScholarGoogle Scholar | 19591461PubMed |

[44]  D. Fiedler, D. H. Leung, R. G. Bergman, K. N. Raymond, Acc. Chem. Res. 2005, 38, 349.
         | Crossref | GoogleScholarGoogle Scholar | 15835881PubMed |

[45]  J. S. Train, A. B. Wragg, A. J. Auty, A. J. Metherell, D. Chekulaev, C. G. P. Taylor, S. P. Argent, J. A. Weinstein, M. D. Ward, Inorg. Chem. 2019, 58, 2386.
         | 30688057PubMed |

[46]  Y. Y. Zhang, W. X. Gao, L. Lin, G. X. Jin, Coord. Chem. Rev. 2017, 344, 323.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  M. D. Wise, K. Severin, Chimia 2015, 69, 191.
         | Crossref | GoogleScholarGoogle Scholar | 26668936PubMed |

[48]  H. Li, Z. J. Yao, D. Liu, G. X. Jin, Coord. Chem. Rev. 2015, 293–294, 139.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  G. Kumar, R. Gupta, Chem. Soc. Rev. 2013, 42, 9403.
         | Crossref | GoogleScholarGoogle Scholar | 24081027PubMed |

[50]  D. Rota Martir, D. Escudero, D. Jacquemin, D. B. Cordes, A. M. Z. Slawin, H. A. Fruchtl, S. L. Warriner, E. Zysman-Colman, Chem. – Eur. J. 2017, 23, 14358.
         | Crossref | GoogleScholarGoogle Scholar | 28783869PubMed |

[51]  L. Li, D. J. Fanna, N. D. Shepherd, L. F. Lindoy, F. Li, J. Incl. Phenom. Macrocycl. Chem. 2015, 82, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  S. S. Nurttila, W. Brenner, J. Mosquera, K. M. van Vliet, J. R. Nitschke, J. N. H. Reek, Chem. – Eur. J. 2019, 25, 609.
         | 30351486PubMed |

[53]  T. Y. Cen, S. P. Wang, Z. B. Zhang, J. Wu, S. J. Li, J. Porphyr. Phthalocyanines 2018, 22, 726.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  (a) See, for example: E. T. Luis, H. Iranmanesh, K. S. A. Arachchige, W. A. Donald, G. Quach, E. G. Moore, J. E. Beves, Inorg. Chem. 2018, 57, 8476.
         | Crossref | GoogleScholarGoogle Scholar | 29969245PubMed |
      (b) G. L. Liu, M. Zeller, K. Z. Su, J. D. Pang, Z. F. Ju, D. Q. Yuan, M. C. Hong, Chem. – Eur. J. 2016, 22, 1734.

[55]  Y. Y. Zhang, L. Zhang, Y. J. Lin, G. X. Jin, Chem. – Eur. J. 2015, 21, 14983.

[56]  L. Li, A. R. Craze, D. J. Fanna, A. J. Brock, J. K. Clegg, L. F. Lindoy, J. R. Aldrich-Wright, J. K. Reynolds, F. Li, Polyhedron 2017, 125, 44.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  Y. J. Zhang, M. Bhadbhade, L. G. Kong, I. Karatchevtseva, R. K. Zheng, Polyhedron 2017, 138, 82.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  S. M. Jansze, K. Severin, Acc. Chem. Res. 2018, 51, 2139.
         | Crossref | GoogleScholarGoogle Scholar | 30156828PubMed |

[59]  S. Komine, T. Tateishi, T. Kojima, H. Nakagawa, Y. Hayashi, S. Takahashi, S. Hiraoka, Dalton Trans. 2019, 4139.
         | Crossref | GoogleScholarGoogle Scholar | 30785436PubMed |

[60]  S. M. Jansze, D. Ortiz, F. Fadaei Tirani, R. Scopelliti, L. Menin, K. Severin, Chem. Commun. 2018, 9529.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  G. Cecot, M. Marmier, S. Geremia, R. De Zorzi, A. V. Vologzhanina, P. Pattison, E. Solari, F. F. Tirani, R. Scopelliti, K. Severin, J. Am. Chem. Soc. 2017, 139, 8371.
         | Crossref | GoogleScholarGoogle Scholar | 28603972PubMed |

[62]  G. Cecot, B. Alameddine, S. Prior, R. D. Zorzi, S. Geremia, R. Scopelliti, F. T. Fadaei, E. Solari, K. Severin, Chem. Commun. 2016, 11243.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  D. Rota Martir, E. Zysman-Colman, Chem. Commun. 2019, 139.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  S. Sanz, H. M. O’Connor, V. Marti-Centelles, P. Comar, M. B. Pitak, S. J. Coles, G. Lorusso, E. Palacios, M. Evangelisti, A. Baldansuren, N. F. Chilton, H. Weihe, E. J. L. McInnes, P. J. Lusby, S. Piligkos, E. K. Brechin, Chem. Sci. 2017, 8, 5526.
         | Crossref | GoogleScholarGoogle Scholar | 28970932PubMed |

[65]  M. Hardy, N. Struch, F. Topić, G. Schnakenburg, K. Rissanen, A. Lützen, Inorg. Chem. 2018, 57, 3507.
         | Crossref | GoogleScholarGoogle Scholar | 29185725PubMed |

[66]  R. Saha, D. Samanta, A. J. Bhattacharyya, P. S. Mukherjee, Chem. – Eur. J. 2017, 23, 8980.
         | Crossref | GoogleScholarGoogle Scholar | 28471006PubMed |

[67]  X.-R. Wu, S.-Y. Yao, L.-Q. Wei, L.-P. Li, B.-H. Ye, Inorg. Chim. Acta 2018, 482, 605.
         | Crossref | GoogleScholarGoogle Scholar |

[68]  S. Wang, J. L. Zuo, H. C. Zhou, H. J. Choi, Y. X. Ke, J. R. Long, X. Z. You, Angew. Chem. Int. Ed. 2004, 43, 5940.
         | Crossref | GoogleScholarGoogle Scholar |

[69]  H. B. Wu, Q. M. Wang, Angew. Chem. Int. Ed. 2009, 48, 7343.
         | Crossref | GoogleScholarGoogle Scholar |

[70]  M. B. Duriska, S. M. Neville, B. Moubaraki, J. A. Cashion, G. J. Halder, K. W. Chapman, C. Balde, J. F. Letard, K. S. Murray, C. J. Kepert, S. R. Batten, Angew. Chem. Int. Ed. 2009, 48, 2549.
         | Crossref | GoogleScholarGoogle Scholar |

[71]  M. B. Duriska, S. M. Neville, J. Z. Lu, S. S. Iremonger, J. F. Boas, C. J. Kepert, S. R. Batten, Angew. Chem. Int. Ed. 2009, 48, 8919.
         | Crossref | GoogleScholarGoogle Scholar |

[72]  M. M. J. Smulders, A. Jimenez, J. R. Nitschke, Angew. Chem. Int. Ed. 2012, 51, 6681.
         | Crossref | GoogleScholarGoogle Scholar |

[73]  F. Reichel, J. K. Clegg, K. Gloe, K. Gloe, J. J. Weigand, J. K. Reynolds, C. G. Li, J. R. Aldrich-Wright, C. J. Kepert, L. F. Lindoy, H. C. Yao, F. Li, Inorg. Chem. 2014, 53, 688.
         | Crossref | GoogleScholarGoogle Scholar | 24393071PubMed |

[74]  D. Simond, S. E. Clifford, A. F. Vieira, C. Besnard, A. F. Williams, RSC Adv. 2014, 4, 16686.
         | Crossref | GoogleScholarGoogle Scholar |

[75]  H. M. O’Connor, S. Sanz, M. B. Pitak, S. J. Coles, G. S. Nichol, S. Piligkos, P. J. Lusby, E. K. Brechin, CrystEngComm 2016, 18, 4914.
         | Crossref | GoogleScholarGoogle Scholar |

[76]  S. Sanz, H. M. O’Connor, E. M. Pineda, K. S. Pedersen, G. S. Nichol, O. Mønsted, H. Weihe, S. Piligkos, E. J. L. McInnes, P. J. Lusby, E. K. Brechin, Angew. Chem. Int. Ed. 2015, 54, 6761.
         | Crossref | GoogleScholarGoogle Scholar |

[77]  S. Sanz, H. M. O’Connor, P. Comar, A. Baldansuren, M. B. Pitak, S. J. Coles, H. Weihe, N. F. Chilton, E. J. L. McInnes, P. J. Lusby, S. Piligkos, E. K. Brechin, Inorg. Chem. 2018, 57, 3500.
         | Crossref | GoogleScholarGoogle Scholar | 29323893PubMed |

[78]  Y. Yang, J. H. Jia, X. L. Pei, H. Zheng, Z. A. Nan, Q. M. Wang, Chem. Commun. 2015, 3804.
         | Crossref | GoogleScholarGoogle Scholar |

[79]  Y. Yang, Y. Wu, J. H. Jia, X. Y. Zheng, Q. Zhang, K. C. Xiong, Z. M. Zhang, Q. M. Wang, Cryst. Growth Des. 2018, 18, 4555.
         | Crossref | GoogleScholarGoogle Scholar |

[80]  K. Li, L. Y. Zhang, C. Yan, S. C. Wei, M. Pan, L. Zhang, C. Y. Su, J. Am. Chem. Soc. 2014, 136, 4456.
         | Crossref | GoogleScholarGoogle Scholar | 24611560PubMed |

[81]  K. Wu, K. Li, Y. J. Hou, M. Pan, L. Y. Zhang, L. Chen, C. Y. Su, Nat. Commun. 2016, 7, 10487.
         | Crossref | GoogleScholarGoogle Scholar | 26839048PubMed |

[82]  J. Guo, Y. W. Xu, K. Li, L. M. Xiao, S. Chen, K. Wu, X. D. Chen, Y. Z. Fan, J. M. Liu, C. Y. Su, Angew. Chem. Int. Ed. 2017, 56, 3852.
         | Crossref | GoogleScholarGoogle Scholar |

[83]  Y.-J. Hou, K. Wu, Z.-W. Wei, K. Li, Y.-L. Lu, C.-Y. Zhu, J.-S. Wang, M. Pan, J.-J. Jiang, G.-Q. Li, C.-Y. Su, J. Am. Chem. Soc. 2018, 140, 18183.
         | Crossref | GoogleScholarGoogle Scholar | 30512934PubMed |

[84]  X.-L. Chen, Z.-X. Han, H.-M. Hu, J.-J. Wang, S.-H. Chen, F. Fu, N. Li, M.-L. Yang, G.-L. Xue, Inorg. Chim. Acta 2009, 362, 3963.
         | Crossref | GoogleScholarGoogle Scholar |

[85]  L. Li, Y. J. Zhang, M. Avdeev, L. F. Lindoy, D. G. Harman, R. K. Zheng, Z. X. Cheng, J. R. Aldrich-Wright, F. Li, Dalton Trans. 2016, 9407.
         | Crossref | GoogleScholarGoogle Scholar | 27227419PubMed |

[86]  Y. Zhang, D. G. Harman, M. Avdeev, I. Karatchevtseva, Inorg. Chim. Acta 2019, 484, 521.
         | Crossref | GoogleScholarGoogle Scholar |

[87]  J. J. Yang, M. Bhadbhade, W. A. Donald, H. Iranmanesh, E. G. Moore, H. Yan, J. E. Beves, Chem. Commun. 2015, 4465.
         | Crossref | GoogleScholarGoogle Scholar |

[88]  C. Shen, A. D. W. Kennedy, W. A. Donald, A. M. Torres, W. S. Price, J. E. Beves, Inorg. Chim. Acta 2017, 458, 122.
         | Crossref | GoogleScholarGoogle Scholar |

[89]  W. J. Ramsay, T. K. Ronson, J. K. Clegg, J. R. Nitschke, Angew. Chem. Int. Ed. 2013, 52, 13439.
         | Crossref | GoogleScholarGoogle Scholar |

[90]  W. J. Ramsay, F. J. Rizzuto, T. K. Ronson, K. Caprice, J. R. Nitschke, J. Am. Chem. Soc. 2016, 138, 7264.
         | Crossref | GoogleScholarGoogle Scholar | 27213555PubMed |

[91]  A. J. Metherell, M. D. Ward, RSC Adv. 2016, 6, 10750.
         | Crossref | GoogleScholarGoogle Scholar |

[92]  A. J. Metherell, M. D. Ward, Chem. Commun. 2014, 6330.
         | Crossref | GoogleScholarGoogle Scholar |