Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Beyond the Woodward-Hoffman Rules: What Controls Reactivity in Eliminative Aromatic Ring-Forming Reactions?

A. D. Dinga Wonanke A and Deborah L. Crittenden A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Canterbury, Christchurch 8041, New Zealand.

B Corresponding author. Email: deborah.crittenden@canterbury.ac.nz

Australian Journal of Chemistry 71(4) 249-256 https://doi.org/10.1071/CH17564
Submitted: 28 October 2017  Accepted: 6 January 2018   Published: 25 January 2018

Abstract

The Mallory (photocyclization) and Scholl (thermal cyclohydrogenation) reactions are widely used in the synthesis of extended conjugated π systems of high scientific interest and technological importance, including molecular wires, semiconducting polymers, and nanographenes. While simple electrocyclization reactions obey the Woodward-Hoffman rules, no such simple, general, and powerful model is available for eliminative cyclization reactions due to their increased mechanistic complexity. In this work, detailed mechanistic investigations of prototypical reactions reveal that there is no single rate-determining step for thermal oxidative dehydrogenation reactions, but they are very sensitive to the presence and distribution of heteroatoms around the photocyclizing ring system. Key aspects of reactivity are correlated to the constituent ring oxidation potentials. For photocyclization reactions, planarization occurs readily and/or spontaneously following photo-excitation, and is promoted by heteroatoms within 5-membered ring adjacent to the photocyclizing site. Oxidative photocyclization requires intersystem crossing to proceed to products, while reactants configured to undergo purely eliminative photocyclization could proceed to products entirely in the excited state. Overall, oxidative photocyclization seems to strike the optimal balance between synthetic convenience (ease of preparation of reactants, mild conditions, tolerant to chemical diversity in reactants) and favourable kinetic and thermodynamic properties.


References

[1]  G. S. Chandler, M. Wajrak, R. N. Khan, Acta Crystallogr. Sect. B 2015, 71, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpsFaksbc%3D&md5=5882db2104753198b59102b2fb80c99fCAS |

[2]  D. Talbi, G. S. Chandler, J. Mol. Spec. 2012, 275, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVamur%2FF&md5=965b8be7a37fc03760302f7679096d1dCAS |

[3]  R. O. Fuller, G. S. Chandler, J. R. Davis, A. J. McKinley, J. Chem. Phys. 2010, 133, 164311.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  I. Bytheway, D. J. Grimwood, B. N. Figgis, G. S. Chandler, D. Jayatilaka, Acta Crystallogr. Sect. A 2002, 58, 244.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  Z. C. Li, D. Jayatilaka, B. N. Figgis, G. S. Chandler, J. Chem. Phys. 2001, 114, 2687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlyksA%3D%3D&md5=f5a7cc03bbc51e25fc81acaaed5678ebCAS |

[6]  G. S. Chandler, B. N. Figgis, Z. C. Li, Phys. Chem. Chem. Phys. 2000, 2, 3743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslKrsbk%3D&md5=c4f1e23f9d598b02cc71f47b7619c7c3CAS |

[7]  G. S. Chandler, D. Jayatilaka, S. K. Wolff, Aust. J. Phys. 1996, 49, 261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs1Kgu78%3D&md5=b32e8c63ab3bcf1a680decea32b71ad9CAS |

[8]  S. K. Wolff, D. Jayatilaka, G. S. Chandler, J. Chem. Phys. 1995, 103, 4562.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVentL4%3D&md5=28f3c9f28f1a9b8655f9146e33c493b2CAS |

[9]  G. S. Chandler, B. N. Figgis, P. A. Reynolds, S. K. Wolff, Chem. Phys. Lett. 1994, 225, 421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsVagtr0%3D&md5=99f691a26d9f0119558e9ef3dd3b6a5cCAS |

[10]  A. D. McLean, B. Liu, G. S. Chandler, J. Chem. Phys. 1992, 97, 8459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsl2gsrY%3D&md5=85c2b5c85524a237fd3b60dd68c91d96CAS |

[11]  G. S. Chandler, G. A. Christos, B. N. Figgis, P. A. Reynolds, J. Chem. Soc., Faraday Trans. 1992, 88, 1961.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsFOrtLY%3D&md5=c534fd7d7c54e9b8818deeca48043b00CAS |

[12]  G. S. Chandler, R. J. Deeth, J. Chem. Soc., Dalton Trans. 1990, 1417.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktFagsLY%3D&md5=5abf01a643749f5186f2acac08f30c8dCAS |

[13]  L. A. Barnes, G. S. Chandler, B. N. Figgis, Mol. Phys. 1989, 68, 711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmvVehtA%3D%3D&md5=1b6c747587a05a9b5b218b46154ab39eCAS |

[14]  L. A. Barnes, R. Glass, P. A. Reynolds, B. N. Figgis, G. S. Chandler, Acta Crystallogr. Sect. A 1984, 40, 620.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  G. S. Chandler, B. N. Figgis, R. A. Phillips, P. A. Reynolds, R. Mason, G. A. Williams, Proc. R. Soc. Lond. A Math. Phys. Sci. 1982, 384, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksFeqtw%3D%3D&md5=6a3c92d69e470a114cea2ba83e7d8ef8CAS |

[16]  M. D. Gould, C. Taylor, S. K. Wolff, G. S. Chandler, D. Jayatilaka, Theor. Chem. Acc. 2008, 119, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFM%3D&md5=bf522d38c16ff308a047b2cbd591d1f1CAS |

[17]  I. Bytheway, G. S. Chandler, B. N. Figgis, Acta Crystallogr. Sect. A 2002, 58, 451.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  D. Jayatilaka, G. S. Chandler, Mol. Phys. 1997, 92, 471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVSkurY%3D&md5=392403b3f55b3cd3c877e077ba2e6cacCAS |

[19]  P. Cassam-Chenai, G. S. Chandler, Int. J. Quantum Chem. 1993, 46, 593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktlCms7c%3D&md5=a1e1717ed579802a99431baf0bd30ad6CAS |

[20]  M. D. Gould, G. S. Chandler, Int. J. Quantum Chem. 1987, 31, 535.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  G. S. Chandler, R. Glass, Int. Rev. Phys. Chem. 1986, 5, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitlCqsLg%3D&md5=6d0b5a4c81dc343a491cbf17331a98f8CAS |

[22]  L. A. Barnes, G. S. Chandler, B. N. Figgis, D. C. Khan, Comput. Phys. Commun. 1985, 36, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltFCluro%3D&md5=4f6d3b3deb92a6834536d514c522664dCAS |

[23]  G. S. Chandler, M. A. Spackman, Acta Crystallogr. Sect. A 1982, 38, 225.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  G. S. Chandler, M. A. Spackman, J. N. Varghese, Acta Crystallogr. Sect. A 1980, 36, 657.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  M. Kivala, D. Wu, X. Feng, C. Li, K. Müllen, Mat. Sci. Tech. 2012, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGksr3M&md5=b55ed8e44b8596a4f51b037494a90846CAS |

[26]  R. Scholl, C. Seer, Eur. J. Org. Chem. 1912, 394, 111.

[27]  R. Scholl, C. Seer, Eur. J. Inorg. Chem. 1922, 55, 109.

[28]  P. Kovacic, C. Wu, J. Polym. Sci. A 1960, 47, 45.

[29]  P. Kovacic, C. Wu, R. W. Stewart, J. Am. Chem. Soc. 1960, 82, 1917.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  A. C. Grimsdale, K. Leok Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev. 2009, 109, 897.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1emu7o%3D&md5=e16a447409f2a591081c63af285ad4cbCAS |

[31]  R. Rieger, D. Beckmann, W. Pisula, W. Steffen, M. Kastler, K. Müllen, Adv. Mater. 2010, 22, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WksrvO&md5=cd792794af07b49858debf55fc0de645CAS |

[32]  A. Bhattacharya, A. De, Prog. Solid State Chem. 1996, 24, 141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1ynsrw%3D&md5=3d173a9de5490da5bbdb6dbd73ad47c6CAS |

[33]  Y. Q. Lu, G. Q. Shi, C. Li, Y. Q. Liang, J. Appl. Polym. Sci. 1998, 70, 2169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsV2ktb4%3D&md5=5b4dadc6f0c04837c529efe248bb9b49CAS |

[34]  A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Khtrg%3D&md5=839df8b3b1f2e00a0e889083de85d68fCAS |

[35]  J. Wu, W. Pisula, K. Müllen, Chem. Rev. 2007, 107, 718.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFGju7Y%3D&md5=8f216866c93229b14b0c899475675a6dCAS |

[36]  F. B. Mallory, J. T. Gordon, C. S. Wood, L. C. Lindquist, M. L. Savitz, J. Am. Chem. Soc. 1962, 84, 4361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXjvFyltA%3D%3D&md5=8221d9618f2f737b12e8853dfb814630CAS |

[37]  F. B. Mallory, C. S. Wood, J. T. Gordon, J. Am. Chem. Soc. 1963, 85, 828.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXlvFamsQ%3D%3D&md5=4ba34bde81c203b734848bba38a99f28CAS |

[38]  F. B. Mallory, C. S. Wood, J. T. Gordon, J. Am. Chem. Soc. 1964, 86, 3094.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktl2qsbk%3D&md5=defae77af6aa6d238b5750da93d850c7CAS |

[39]  C. S. Wood, F. B. Mallory, J. Org. Chem. 1964, 29, 3373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXivFan&md5=2de8a0001b739d6ac84c902b4577144fCAS |

[40]  A. Sudhakar, T. J. Katz, B. W. Yang, J. Am. Chem. Soc. 1986, 108, 2790.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktVKlsb4%3D&md5=81b6190b466b66a28b0fe55eac61aedcCAS |

[41]  L. B. Liu, B. W. Yang, T. J. Katz, M. K. Poindexter, J. Org. Chem. 1991, 56, 3769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkslWjtbo%3D&md5=feeb183879787d0f99ac9cd523509ac6CAS |

[42]  F. B. Mallory, C. W. Mallory, Org. React. 1984, 30, 1.
         | 1:CAS:528:DyaL2cXhsleqsrs%3D&md5=ce7ef5a26a41ad3f02d3b259a3e25b2fCAS |

[43]  Y. Tominaga, R. N. Castle, J. Heterocycl. Chem. 1996, 33, 523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvF2isb8%3D&md5=db34d4c25704d005edc67fa416a00881CAS |

[44]  K. B. Jorgensen, Molecules 2010, 15, 4334.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  O. Hammerich, V. D. Parker, Adv. Phys. Org. Chem. 1984, 20, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktlKrsb8%3D&md5=7998fb71bd99f5d04a227a64e8acbc68CAS |

[46]  M. Di Stefano, F. Negri, P. Carbone, K. Müllen, Chem. Phys. 2005, 314, 85.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFWms7Y%3D&md5=e76ff724b52fc818511a08ecea3bd709CAS |

[47]  L. Zhai, R. Shukla, S. H. Wadumethrige, R. Rathore, J. Org. Chem. 2010, 75, 4748.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVKqsbc%3D&md5=91172c624d808b6aa985fd342b86008fCAS |

[48]  D. Guillaumont, T. Kobayashi, K. Kanda, H. Miyasaka, K. Uchida, S. Kobatake, K. Shibata, S. Nakamura, M. Irie, J. Phys. Chem. A 2002, 106, 7222.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1CjtLs%3D&md5=a41db58d0e2b5036dbbaf3567c2afd5bCAS |

[49]  R. B. Woodward, R. Hoffmann, J. Am. Chem. Soc. 1965, 87, 395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkvVSguw%3D%3D&md5=98a4a78806c626b80518abca59ba784fCAS |

[50]  R. Hoffmann, R. B. Woodward, J. Am. Chem. Soc. 1965, 87, 2046.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkt1ems7s%3D&md5=36ee6236ee94bdd9e9b84e8dd741022eCAS |

[51]  R. B. Woodward, R. Hoffmann, Angew. Chem. 1969, 8, 781.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXjsFymtA%3D%3D&md5=65b623db1bc90c5bc06c464ac3d353baCAS |

[52]  J. E. Baldwin, J. Chem. Soc. Chem. Comm. 1976, 734.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhsF2rtA%3D%3D&md5=3934cfbdf97578b9799a41be586c33beCAS |

[53]  K. Gilmore, R. K. Mohamed, I. V. Alabugin, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlOgtrjO&md5=6df9c42d4160785cb2b629396abdcd51CAS |

[54]  P. Geerlings, P. W. Ayers, A. Toro-Labbe, P. K. Chattaraj, F. De Proft, Acc. Chem. Res. 2012, 45, 683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWiur8%3D&md5=400201e82c45d582737c3eb124eb331eCAS |

[55]  W. H. Laarhoven, T. J. H. Cuppen, R. J. F. Nivard, Rec. Trav. Chim. – J. Roy. Neth. Chem. 1968, 87, 687.
         | 1:CAS:528:DyaF1cXksFyks74%3D&md5=6f8c0ee44191276b73a7d502c574c6d2CAS |

[56]  W. H. Laarhoven, T. J. H. Cuppen, R. J. F. Nivard, Tetrahedron 1970, 26, 1069.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhtlWktLo%3D&md5=f0b388be74cd6590855b81819d2df7cdCAS |

[57]  W. H. Laarhoven, T. J. H. Cuppen, R. J. F. Nivard, Tetrahedron 1970, 26, 4865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXjtFCmsw%3D%3D&md5=1d15fd6b96c4b9ef631a912bc78381a3CAS |

[58]  W. H. Laarhoven, Rec. Trav. Chim. – J. Roy. Neth. Chem. 1983, 102, 185.
         | 1:CAS:528:DyaL3sXktlOlur0%3D&md5=c70f6155049679e6acf8a320ae6477ddCAS |

[59]  C. J. M. Stirling, Acc. Chem. Res. 1979, 12, 198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXktF2iu7s%3D&md5=529d555b89552858b6373008b11dc2ecCAS |

[60]  B. T. King, J. Kroulík, C. R. Robertson, P. Rempala, C. L. Hilton, J. D. Korinek, L. M. Gortari, J. Org. Chem. 2007, 72, 2279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFKrs7g%3D&md5=5da67a3249a59a57ea64e4edc5e7e54bCAS |

[61]  A. D. Becke, J. Chem. Phys. 1993, 98, 1372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlagt7o%3D&md5=cb8fc0b5915909e6c9699b66ab2fb343CAS |

[62]  W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XptVemsw%3D%3D&md5=540231947c2f8dbe7bea7d200a36e716CAS |

[63]  M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. De-Frees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlsFSqt7g%3D&md5=457b181501a74df389b81ddfa0f07eaeCAS |

[64]  M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80, 3265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvFOqu7k%3D&md5=bdb99dbabaa26a218e1049f9feb5f18eCAS |

[65]  P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtlyju70%3D&md5=4ec2951126cf2c498336e7ce0f68e61cCAS |

[66]  S. Hirata, M. Head-Gordon, Chem. Phys. Lett. 1999, 314, 291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsl2rsr0%3D&md5=700906ee7a9641c9a0fbab1213ea029dCAS |

[67]  V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1Cgt7o%3D&md5=2e35a9fdbe3dfc231595bd54d98043bcCAS |

[68]  Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, et al. Mol. Phys. 2015, 113, 184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2ksbnN&md5=425288af96c42b55092f5fbe66b532d9CAS |

[69]  A. W. Lange, J. M. Herbert, J. Phys. Chem. Lett. 2010, 1, 556.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1alurzF&md5=492c7d0faacb79b305bbf45d0ee59ea1CAS |

[70]  H. C. Kang, K. E. Geckeler, Polymer 2000, 41, 6931.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktl2js7o%3D&md5=b19a62ce7a4bc0bab12630c826ae0771CAS |

[71]  D. Stanke, M. L. Hallensleben, L. Toppare, Synth. Met. 1995, 72, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltV2ks7c%3D&md5=9b9b2fc3d26eec043d8a7c358b5b1656CAS |

[72]  C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. A 2006, 110, 2493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFSisA%3D%3D&md5=50b30b604f918cac6bf6aff2d325da88CAS |

[73]  E. F. da Silva, H. F. Svendsen, K. M. Merz, J. Phys. Chem. A 2009, 113, 6404.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1eiurw%3D&md5=da5b53f34a417f2d2a7265620d10460bCAS |

[74]  J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory Comput. 2008, 4, 297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVeguw%3D%3D&md5=a99284f7390f9c3bd8f76ef28b06e09aCAS |

[75]  D. H. Ess, K. Houk, J. Phys. Chem. A 2005, 109, 9542.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKmtLzI&md5=6bd9e6eacbf5fb7de2765a7baf732ae8CAS |

[76]  V. Guner, K. S. Khuong, A. G. Leach, P. S. Lee, M. D. Bartberger, K. Houk, J. Phys. Chem. A 2003, 107, 11445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Wqt70%3D&md5=c7374e8cf4942088e1240f2999cab020CAS |

[77]  P. Rempala, J. Kroulík, B. T. King, J. Org. Chem. 2006, 71, 5067.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVSjtbs%3D&md5=86b71b0de389f080b09aeec6c132d57fCAS |

[78]  A. Perrier, S. Aloise, M. Olivucci, D. Jacquemin, J. Phys. Chem. Lett. 2013, 4, 2190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslKit7w%3D&md5=7c890c8acc3033ef7f796c79116e4316CAS |

[79]  A. Karton, L. Goerigk, J. Comput. Chem. 2015, 36, 622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjt1Sgurc%3D&md5=aac8239e6f409f30d08841df09ab024bCAS |

[80]  N. Weinberg, H. Weinberg, Chem. Rev. 1968, 68, 449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXksFKnsb0%3D&md5=77b41e25243222f969735b67f075c96aCAS |

[81]  J. W. Loveland, G. Dimeler, Anal. Chem. 1961, 33, 1196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XitFKrtg%3D%3D&md5=aacf417d1db502179e1e140324651b35CAS |