The S66 Non-Covalent Interactions Benchmark Reconsidered Using Explicitly Correlated Methods Near the Basis Set Limit*
Manoj K. Kesharwani A , Amir Karton B , Nitai Sylvetsky A and Jan M. L. Martin A CA Department of Organic Chemistry, Weizmann Institute of Science, Reḥovot 76100, Israel.
B School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
C Corresponding author. Email: gershom@weizmann.ac.il
Australian Journal of Chemistry 71(4) 238-248 https://doi.org/10.1071/CH17588
Submitted: 14 November 2017 Accepted: 22 December 2017 Published: 25 January 2018
Abstract
The S66 benchmark for non-covalent interactions has been re-evaluated using explicitly correlated methods with basis sets near the one-particle basis set limit. It is found that post-MP2 ‘high-level corrections’ are treated adequately well using a combination of CCSD(F12*) with (aug-)cc-pVTZ-F12 basis sets on the one hand, and (T) extrapolated from conventional CCSD(T)/heavy-aug-cc-pV{D,T}Z on the other hand. Implications for earlier benchmarks on the larger S66×8 problem set in particular, and for accurate calculations on non-covalent interactions in general, are discussed. At a slight cost in accuracy, (T) can be considerably accelerated by using sano-V{D,T}Z+ basis sets, whereas half-counterpoise CCSD(F12*)(T)/cc-pVDZ-F12 offers the best compromise between accuracy and computational cost.
References
[1] Analytical Methods in Supramolecular Chemistry (Ed. C. A. Schalley) 2012 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).[2] P. Hobza, K. Müller-Dethlefs, Non-Covalent Interactions: Theory and Experiment 2009 (Royal Society of Chemistry: Cambridge).
[3] J. Řezáč, P. Hobza, Chem. Rev. 2016, 116, 5038.
| Crossref | GoogleScholarGoogle Scholar |
[4] P. Hobza, Acc. Chem. Res. 2012, 45, 663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVGjtA%3D%3D&md5=02ad4b3346e09972f6e0aabb8204cc1dCAS |
[5] S. Grimme, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVGlu70%3D&md5=2eba056bce15672e0dabd6aede520710CAS |
[6] M. Dubecký, R. Derian, P. Jurečka, L. Mitas, P. Hobza, M. Otyepka, Phys. Chem. Chem. Phys. 2014, 16, 20915.
| Crossref | GoogleScholarGoogle Scholar |
[7] L. A. Burns, M. S. Marshall, C. D. Sherrill, J. Chem. Theory Comput. 2014, 10, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2rsLnL&md5=5e56406971ca4ce69b1a5d78c4c3d3acCAS |
[8] M. J. Gillan, D. Alfè, P. J. Bygrave, C. R. Taylor, F. R. Manby, J. Chem. Phys. 2013, 139, 114101.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c7ivFWjuw%3D%3D&md5=5789e590b34940f928c564c288fca8acCAS |
[9] M. J. Gillan, D. Alfè, A. Michaelides, J. Chem. Phys. 2016, 144, 130901.
| Crossref | GoogleScholarGoogle Scholar |
[10] N. Mardirossian, M. Head-Gordon, J. Chem. Theory Comput. 2016, 12, 4303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlOrs7rN&md5=db06a225f0e6fa69251490b9b85c5658CAS |
[11] M. J. Robertson, J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory Comput. 2015, 11, 3499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpsFOlsbc%3D&md5=10fa64dd021d51b5ba1b8f322bedf7b0CAS |
[12] J. J. P. Stewart, J. Mol. Model. 2013, 19, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVegtA%3D%3D&md5=4042acf02d050444b7c2218017257467CAS |
[13] B. P. Martin, C. J. Brandon, J. J. P. Stewart, S. B. Braun-Sand, Proteins: Struct., Funct., Bioinf. 2015, 83, 1427.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXps1WksrY%3D&md5=dab27049f99e508b68afd0b255b78a7eCAS |
[14] A. Karton, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016, 6, 292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmsFOmtrs%3D&md5=365d595a42121b7066f2ba58cdc0ab02CAS |
[15] C. D. Sherrill, in Non-Covalent Interactions in Quantum Chemistry and Physics (Eds A. Otero de la Rosa, G. A. DiLabio) 2017, pp. 137–168 (Elsevier: Amsterdam).
[16] D. Manna, M. K. Kesharwani, N. Sylvetsky, J. M. L. Martin, J. Chem. Theory Comput. 2017, 13, 3136.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXot1ynu70%3D&md5=6120fada7cbf8c5c2a2ec5e4e9dcd80aCAS |
[17] B. Brauer, M. K. Kesharwani, S. Kozuch, J. M. L. Martin, Phys. Chem. Chem. Phys. 2016, 18, 20905.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjtlOjsro%3D&md5=9f487776aed9e2e9a928f68fcd55bd61CAS |
[18] M. K. Kesharwani, A. Karton, J. M. L. Martin, J. Chem. Theory Comput. 2016, 12, 444.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvF2ltL%2FE&md5=3d9c273ccbfde08d1f984dcf71857012CAS |
[19] J. T. Margraf, D. S. Ranasinghe, R. J. Bartlett, Phys. Chem. Chem. Phys. 2017, 19, 9798.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXksVOqur4%3D&md5=6bf1c65ffb93176c6f049ad6e02c5099CAS |
[20] L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme, Phys. Chem. Chem. Phys. 2017, 19, 32184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhslajtLnF&md5=1de56ab8de0a755cb386422601fa41c6CAS |
[21] N. Mardirossian, M. Head-Gordon, Mol. Phys. 2017, 115, 2315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtVCltb3O&md5=3b10d0acc8e93845a4e42ccc61d93139CAS |
[22] A. J. Stone, in Non-Covalent Interactions in Quantum Chemistry and Physics (Eds A. Otero de la Rosa, G. A. DiLabio) 2017, pp. 3–26 (Elsevier: Amsterdam).
[23] S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Chem. Rev. 2016, 116, 5105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmtVWis78%3D&md5=f727f3fbd18958005aec6b5a52181110CAS |
[24] L. Goerigk, in Non-Covalent Interactions in Quantum Chemistry and Physics (Eds A. Otero de la Rosa, G. A. DiLabio) 2017, pp. 195–219 (Elsevier: Amsterdam).
[25] J. P. Perdew, K. Schmidt, in AIP Conference Proceedings (Eds V. Van Doren, C. Van Alsenoy, P. Geerlings) 2001, Vol. 577, pp. 1–20 (AIP: Antwerp).
[26] T. Schwabe, in Chemical Modelling (Eds M. Springborg, J.-O. Joswig) 2017, Vol. 13, pp. 191–220 (Royal Society of Chemistry: Cambridge, UK).
[27] S. Kozuch, J. M. L. Martin, Phys. Chem. Chem. Phys. 2011, 13, 20104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCgurbF&md5=96d82e8cd8e37022cca678b8e46dbdd7CAS |
[28] S. Kozuch, J. M. L. Martin, J. Comput. Chem. 2013, 34, 2327.
| 1:CAS:528:DC%2BC3sXhtlans7fN&md5=fd403207d3692a0faf5ba40172365b8bCAS |
[29] P. D. Mezei, G. I. Csonka, A. Ruzsinszky, M. Kállay, J. Chem. Theory Comput. 2015, 11, 4615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVWnu7%2FF&md5=220a8b2c8d28ad0d56aec8ae04c9a4c7CAS |
[30] P. D. Mezei, G. I. Csonka, A. Ruzsinszky, M. Kállay, J. Chem. Theory Comput. 2017, 13, 796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjsFyhuw%3D%3D&md5=a3162a7dada9d2d7825a0bd22a7576ceCAS |
[31] K. E. Riley, J. A. Platts, J. Řezáč, P. Hobza, J. G. Hill, J. Phys. Chem. A 2012, 116, 4159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVylsL0%3D&md5=109c1ae1649c831fc82c23753eddd4caCAS |
[32] J. Řezáč, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2011, 7, 3466.
| Crossref | GoogleScholarGoogle Scholar |
[33] J. Rezáč, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2011, 7, 2427.
| Crossref | GoogleScholarGoogle Scholar |
[34] N. Sylvetsky, M. K. Kesharwani, J. M. L. Martin, J. Chem. Phys. 2017, 147, 134106.
| Crossref | GoogleScholarGoogle Scholar |
[35] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselman, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. M. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, MOLPRO, Version 2015.1, A Package of Ab Initio Programs 2015 (University of Cardiff Chemistry Consultants (UC3): Cardiff).
[36] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFGls7s%3D&md5=34fd77ce2353f2ac48a33f9ed3386037CAS |
[37] E. F. Valeev, T. Daniel Crawford, J. Chem. Phys. 2008, 128, 244113.
| Crossref | GoogleScholarGoogle Scholar |
[38] F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka, F. Weigend, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFSjtr8%3D&md5=3d221df98036f4543852dfd7a2884392CAS |
[39] D. P. Tew, W. Klopper, C. Neiss, C. Hättig, Phys. Chem. Chem. Phys. 2007, 9, 1921.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVOrsr0%3D&md5=d82040913aa0667dc3fd88a951128e7aCAS |
[40] C. Hättig, D. P. Tew, A. Köhn, J. Chem. Phys. 2010, 132, 231102.
| Crossref | GoogleScholarGoogle Scholar |
[41] A. Köhn, D. P. Tew, J. Chem. Phys. 2010, 133, 174117.
| Crossref | GoogleScholarGoogle Scholar |
[42] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=db978a0efa6c86f33a9fa88a9c640768CAS |
[43] R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktFClurw%3D&md5=653690657708c749c3cb01748988cec9CAS |
[44] D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlans7Y%3D&md5=5c2913c93fe5f65f3496a4113d37bf56CAS |
[45] K. A. Peterson, D. E. Woon, T. H. Dunning, J. Chem. Phys. 1994, 100, 7410.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtlWmurY%3D&md5=f2da758fc8d190a07c46d39e705dc9a1CAS |
[46] F. Neese, E. F. Valeev, J. Chem. Theory Comput. 2011, 7, 33.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSkurjE&md5=7ae62301e6fc19a24ba9872427004b0eCAS |
[47] T. B. Adler, G. Knizia, H.-J. Werner, J. Chem. Phys. 2007, 127, 221106.
| Crossref | GoogleScholarGoogle Scholar |
[48] G. Knizia, T. B. Adler, H.-J. Werner, J. Chem. Phys. 2009, 130, 54104.
| Crossref | GoogleScholarGoogle Scholar |
[49] K. A. Peterson, T. B. Adler, H.-J. Werner, J. Chem. Phys. 2008, 128, 84102.
| Crossref | GoogleScholarGoogle Scholar |
[50] F. Weigend, Phys. Chem. Chem. Phys. 2002, 4, 4285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslKltb4%3D&md5=dade125d3f1c397617574ff40f257a48CAS |
[51] F. Weigend, A. Köhn, C. Hättig, J. Chem. Phys. 2002, 116, 3175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSiu7k%3D&md5=cf2968ebed696bd11bc70ca4b974158eCAS |
[52] C. Hättig, Phys. Chem. Chem. Phys. 2005, 7, 59.
| Crossref | GoogleScholarGoogle Scholar |
[53] K. E. Yousaf, K. A. Peterson, Chem. Phys. Lett. 2009, 476, 303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVejtLg%3D&md5=a2b06a47af55b63c57547c97e23822e8CAS |
[54] K. E. Yousaf, K. A. Peterson, J. Chem. Phys. 2008, 129, 184108.
| Crossref | GoogleScholarGoogle Scholar |
[55] K. A. Peterson, M. K. Kesharwani, J. M. L. Martin, Mol. Phys. 2015, 113, 1551.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVyjsr3O&md5=7dc8817dcfdc39db624b9a63b6c621c7CAS |
[56] F. Weigend, J. Comput. Chem. 2008, 29, 167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtV2ksA%3D%3D&md5=647970b1480a48404d854d019098acb1CAS |
[57] C. Hättig, Phys. Chem. Chem. Phys. 2005, 7, 59.
| Crossref | GoogleScholarGoogle Scholar |
[58] N. Sylvetsky, M. K. Kesharwani, J. M. L. Martin, AIP Conf. Proc. 2017, 1906, 030006.
| Crossref | GoogleScholarGoogle Scholar |
[59] R. A. Shaw, J. G. Hill, J. Chem. Theory Comput. 2017, 13, 1691.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjsFCmsbY%3D&md5=6d088ee6c9983ca6567dc084826bd9ecCAS |
[60] J. G. Hill, K. A. Peterson, G. Knizia, H.-J. Werner, J. Chem. Phys. 2009, 131, 194105.
| Crossref | GoogleScholarGoogle Scholar |
[61] J. Noga, J. Šimunek, Chem. Phys. 2009, 356, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1ertLY%3D&md5=94e7c05f57151f01f807df05a9fe4443CAS |
[62] O. Marchetti, H.-J. Werner, Phys. Chem. Chem. Phys. 2008, 10, 3400.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVemtbg%3D&md5=121d497ae658dac05bebf4c8855555d7CAS |
[63] O. Marchetti, H. J. Werner, J. Phys. Chem. A 2009, 113, 11580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ahtbbL&md5=e37c1a5219b5fbf2869d5cc70706251fCAS |
[64] B. Brauer, M. K. Kesharwani, J. M. L. Martin, J. Chem. Theory Comput. 2014, 10, 3791.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Sqsb3J&md5=fb6bcb4e55b4ef5c9f08e7a93b3a4bd4CAS |
[65] J. Řezáč, P. Jurečka, K. E. Riley, J. Černý, H. Valdes, K. Pluháčková, K. Berka, T. Řezáč, M. Pitoňák, J. Vondrášek, P. Hobza, Collect. Czechoslov. Chem. Commun. 2008, 73, 1261.
| Crossref | GoogleScholarGoogle Scholar |
[66] D. A. Sirianni, L. A. Burns, C. D. Sherrill, J. Chem. Theory Comput. 2017, 13, 86.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFSit7zF&md5=41f05a97b78d2112a8b8e98d8996b722CAS |
[67] N. Sylvetsky, K. A. Peterson, A. Karton, J. M. L. Martin, J. Chem. Phys. 2016, 144, 214101.
| Crossref | GoogleScholarGoogle Scholar |
[68] G. Schmitz, C. Hättig, J. Chem. Theory Comput. 2017, 13, 2623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXnvFCntrs%3D&md5=35afd7ed8fe666ebe3d64bf6291dd95dCAS |
[69] Q. Ma, H.-J. Werner, J. Chem. Theory Comput. 2018, 14, 198.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhvFaqsLnI&md5=3f76b8ec72da3615462b99987645be2cCAS |
[70] C. Peng, J. A. Calvin, F. Pavošević, J. Zhang, E. F. Valeev, J. Phys. Chem. A 2016, 120, 10231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFKnsrrK&md5=7f67f647c0e4bdce116e723fb711745eCAS |