Modelling the Effect of Conformation on Hydrogen-Atom Abstraction from Peptides
Bun Chan A C and Leo Radom B CA Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.
B School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
C Corresponding authors. Email: bun.chan@nagasaki-u.ac.jp; radom@chem.usyd.edu.au
Australian Journal of Chemistry 71(4) 257-264 https://doi.org/10.1071/CH17621
Submitted: 30 November 2017 Accepted: 6 January 2018 Published: 12 February 2018
Abstract
Computational quantum chemistry is used to examine the effect of conformation on the kinetics of hydrogen-atom abstraction by HO• from amides of glycine and proline as peptide models. In accord with previous findings, it is found that there are substantial variations possible in the conformations and the corresponding energies, with the captodative effect, hydrogen bonding, and solvation being some of the major features that contribute to the variations. The ‘minimum-energy-structure-pathway’ strategy that is often employed in theoretical studies of peptide chemistry with small models certainly provides valuable fundamental information. However, one may anticipate different reaction outcomes in structurally constrained systems due to modified reaction thermodynamics and kinetics, as demonstrated explicitly in the present study. Thus, using a ‘consistent-conformation-pathway’ approach may indeed be more informative in such circumstances, and in this regard theory provides information that would be difficult to obtain from experimental studies alone.
References
[1] J. Stubbe, W. A. van der Donk, Chem. Rev. 1998, 98, 705.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1GrtbY%3D&md5=0a1f6c900a8bb80035985af1875a31d6CAS |
[2] M. J. Davies, R. T. Dean, Radical-Mediated Protein Oxidation: From Chemistry to Medicine 1997 (Oxford University Press: New York, NY).
[3] M. J. Davies, Biochem. Biophys. Res. Commun. 2003, 305, 761.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFersbo%3D&md5=f4b2ab02642b4dffbade515c08e24adbCAS |
[4] J. M. Gebicki, T. Nauser, A. Domazou, D. Steinmann, P. L. Bounds, W. H. Koppenol, Amino Acids 2010, 39, 1131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaqtb7E&md5=4ebf9c6663ac191fa06f65dda35f2b1cCAS |
[5] W. M. Garrison, Chem. Rev. 1987, 87, 381.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtlyktrw%3D&md5=ebedfdcfac8088e58be8f3bea659299bCAS |
[6] E. R. Stadtman, Annu. Rev. Biochem. 1993, 62, 797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsFCqsrY%3D&md5=c52683497cc2e3827e9e6fd5989ef316CAS |
[7] C. J. Easton, Chem. Rev. 1997, 97, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFOhsw%3D%3D&md5=433fefe109483b4e30836d44caa50984CAS |
[8] G. M. Sandala, D. M. Smith, L. Radom, Acc. Chem. Res. 2010, 43, 642.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Gnu7Y%3D&md5=2850ff02191d19df9054408e8dbcf9fbCAS |
[9] F. Ban, K. N. Rankin, J. W. Gauld, R. J. Boyd, Theor. Chem. Acc. 2002, 108, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFOjs7k%3D&md5=503fd0c153b0471a4ae3af6bb5e6467fCAS |
[10] J. Hioe, M. Mosch, D. M. Smith, H. Zipse, RSC Adv. 2013, 3, 12403.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyks7rK&md5=434f76bf236d77753121b19e06ee8eb7CAS |
[11] D. A. Block, D. Yu, D. A. Armstrong, A. Rauk, Can. J. Chem. 1998, 76, 1042.
| 1:CAS:528:DyaK1cXnslSgsL4%3D&md5=0f5c608677521a555d7b354b357f93a7CAS |
[12] A. Rauk, D. Yu, J. Taylor, G. V. Shustov, D. A. Block, D. A. Armstrong, Biochemistry 1999, 38, 9089.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVCqtrs%3D&md5=c5823cc960f7d18a789fbb29e564f911CAS |
[13] A. Rauk, D. A. Armstrong, J. Am. Chem. Soc. 2000, 122, 4185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitF2gsL0%3D&md5=a4d0c423378305f92498be5add6a88a0CAS |
[14] J. Uranga, O. Lakuntza, E. Ramos-Cordoba, J. M. Matxain, J. I. Mujika, Phys. Chem. Chem. Phys. 2016, 18, 30972.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1yrsr7O&md5=8931216520f528d27162a4d3967a58deCAS |
[15] M. Owen, M. Szori, I. G. Csizmadia, B. Viskolcz, J. Phys. Chem. B 2012, 116, 1143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ajsLvI&md5=3008e28a4815ea33bf846d788f96c111CAS |
[16] A. S. Menon, D. J. Henry, T. Bally, L. Radom, Org. Biomol. Chem. 2011, 9, 3636.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1Ght7o%3D&md5=41e469ab0c79e8d94b1ec8df900618dcCAS |
[17] B. Chan, M. Morris, L. Radom, Aust. J. Chem. 2011, 64, 394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVCrs78%3D&md5=20732ce32b4168a72381c2621bdcb2e3CAS |
[18] B. Chan, L. Radom, J. Phys. Chem. A 2012, 116, 4975.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFGmsrg%3D&md5=a33419398c7cf18e1fa9a91bae44481dCAS |
[19] B. Chan, L. Radom, J. Phys. Chem. A 2013, 117, 3666.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1egtr8%3D&md5=6317d21326f972c2907796d48d387f0dCAS |
[20] M. Morris, B. Chan, L. Radom, J. Phys. Chem. A 2014, 118, 2810.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls12hsbs%3D&md5=c40945f61a0554e8084ad7d30ef64922CAS |
[21] B. Chan, D. Moran, C. J. Easton, L. Radom, Chem. Asian J. 2017, 12, 1485.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXotF2ksrs%3D&md5=7616dfe02e73ce0797daf04533e9eccfCAS |
[22] R. J. O’Reilly, B. Chan, M. S. Taylor, S. Ivanic, G. B. Bacskay, C. J. Easton, L. Radom, J. Am. Chem. Soc. 2011, 133, 16553.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1agsrfO&md5=74706085a85409a3d7f1978f0a4d6bb9CAS |
[23] B. Chan, R. J. O’Reilly, C. J. Easton, L. Radom, J. Org. Chem. 2012, 77, 9807.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSgs7nK&md5=acc953fc416f0803838dfedfd5fbe8e0CAS |
[24] R. I. J. Amos, B. Chan, C. J. Easton, L. Radom, J. Phys. Chem. B 2015, 119, 783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1eksL%2FM&md5=3f2c60ba4c6101803996010a307d12f0CAS |
[25] B. Chan, C. J. Easton, L. Radom, J. Phys. Chem. A 2015, 119, 3843.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsVentrs%3D&md5=4e45423b768bd475ec15ab04403fac1eCAS |
[26] B. Chan, A. Karton, C. J. Easton, L. Radom, J. Chem. Theory Comput. 2016, 12, 1606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjsFOmtrs%3D&md5=0a6e2adedbfe8051b9c08363a264f1f9CAS |
[27] E. I. Izgorodina, C. Y. Lin, M. L. Coote, Phys. Chem. Chem. Phys. 2007, 9, 2507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltleisLg%3D&md5=e97cb57bd4e6203fd9a176feb857abf1CAS |
[28] M. Andrea, C. Daniele, WIREs Comput. Mol. Sci. 2012, 2, 613641.
[29] Y. Yuan, M. J. L. Mills, P. L. A. Popelier, F. Jensen, J. Phys. Chem. A 2014, 118, 7876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Gltb3N&md5=386e4818f05c30f464cc358cf4a5564dCAS |
[30] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision C.01 2009 (Gaussian, Inc.: Wallingford, CT).
[31] Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory Comput. 2006, 2, 364.
| Crossref | GoogleScholarGoogle Scholar |
[32] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksV2is74%3D&md5=7b70c88a85a93c4989dc8ee49071f2fdCAS |
[33] S. Kozuch, J. M. L. Martin, Phys. Chem. Chem. Phys. 2011, 13, 20104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCgurbF&md5=96d82e8cd8e37022cca678b8e46dbdd7CAS |
[34] J. P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 2007, 111, 11683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOrs77F&md5=0d1dcd6dcfa92deea623413409eb14a5CAS |
[35] M. K. Kesharwani, A. Karton, J. M. L. Martin, J. Chem. Theory Comput. 2016, 12, 444.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvF2ltL%2FE&md5=3d9c273ccbfde08d1f984dcf71857012CAS |
[36] H. G. Viehe, Z. Janousek, R. Merenyi, L. Stella, Acc. Chem. Res. 1985, 18, 148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktlKrs7c%3D&md5=abda34e9598cf30d932b371d52f224fdCAS |
[37] A. K. Croft, C. J. Easton, L. Radom, J. Am. Chem. Soc. 2003, 125, 4119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvF2lsbg%3D&md5=5fa3dfd05272a70667c6e7fac83bb245CAS |
[38] J. Hioe, G. Savasci, H. Brand, H. Zipse, Chem. – Eur. J. 2011, 17, 3781.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFWnsr0%3D&md5=57994a995e6fcffcbeb99f7535d1faf9CAS |
[39] S. Pratihar, G. L. Barnes, W. L. Hase, Chem. Soc. Rev. 2016, 45, 3595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVCitrnP&md5=c0b2d46f19b544ef4c6f01891eb0bceaCAS |
[40] C. E. Plummer, M. L. Stover, S. S. Bokatzian, J. T. M. Davis, D. A. Dixon, C. J. Cassady, J. Phys. Chem. B 2015, 119, 9661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1SrsL%2FL&md5=6cfea8ed26b1512f10824441b5476fbeCAS |