Magnetic Pd/Fe3O4 Composite: Synthesis, Structure, and Catalytic Activity
Shi-Qiang Bai A D , Lu Jiang B , Sheng-Li Huang A , Ming Lin A , Shuang-Yuan Zhang A , Ming-Yong Han A D , Jianwei Xu A , Yixin Lu B , Guo-Xin Jin C and T. S. Andy Hor A B DA Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Republic of Singapore.
B Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore.
C Advanced Materials Laboratory, Department of Chemistry, Fudan University, Shanghai 200433, China.
D Corresponding authors. Email: bais@imre.a-star.edu.sg; my-han@imre.a-star.edu.sg; andyhor@imre.a-star.edu.sg
Australian Journal of Chemistry 67(10) 1387-1390 https://doi.org/10.1071/CH14148
Submitted: 16 March 2014 Accepted: 24 April 2014 Published: 23 June 2014
Abstract
Composite Pd/Fe3O4 (1) was designed and synthesised by immobilization of tridentate pincer ligands with triethoxysilane groups on Fe3O4 nanoparticles, PdII complexation, and in-situ reduction process. The composite was characterised by transmission electron microscopy, scanning electron microscopy energy-dispersive X-ray spectroscopy, powder X-ray diffraction, vibrating sample magnetometer, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller analysis. The composite featured Pd nanoparticles of ~2–4 nm, exhibited good thermal stability and hydrophilic property as well as excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol in water.
References
[1] H. Zeng, S. Sun, Adv. Funct. Mater. 2008, 18, 391.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVyktrc%3D&md5=4c14dd33d336e157fc2be188d40f475fCAS |
[2] L. H. Reddy, J. L. Arias, J. Nicolas, P. Couvreur, Chem. Rev. 2012, 112, 5818.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOiu77O&md5=35121c2f388d4acef77b5d307f8bc2f9CAS | 23043508PubMed |
[3] S. Liu, S.-Q. Bai, Y. Zheng, K. W. Shah, M.-Y. Han, ChemCatChem 2012, 4, 1462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKitrrJ&md5=5321e9d8b19e24c5724c14acc8f9f412CAS |
[4] H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, ACS Nano 2012, 6, 2693.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSku74%3D&md5=dbfe9501a6a0c5183628f3015179a11fCAS | 22303866PubMed |
[5] Z. Jin, M. Xiao, Z. Bao, P. Wang, J. Wang, Angew. Chem. Int. Ed. 2012, 51, 6406.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFCis7w%3D&md5=9b7b0d48e162138757d2d9be109b50cbCAS |
[6] H.-P. Zhou, H.-S. Wu, J. Shen, A.-X. Yin, L.-D. Sun, C.-H. Yan, J. Am. Chem. Soc. 2010, 132, 4998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVaru7g%3D&md5=de535f3c643cae04d01839b40103ff83CAS | 20329793PubMed |
[7] K. Kohara, S. Yamamoto, L. Seinberg, T. Murakami, M. Tsujimoto, T. Ogawa, H. Kurata, H. Kageyama, M. Takano, Chem. Commun. 2013, 49, 2563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyjtL0%3D&md5=b81c72d041d5bee7c21b0aa8d7770d16CAS |
[8] P. Sonström, D. Arndt, X. Wang, V. Zielasek, M. Bäumer, Angew. Chem. Int. Ed. 2011, 50, 3888.
| Crossref | GoogleScholarGoogle Scholar |
[9] K. Jiang, H.-X. Zhang, Y.-Y. Yang, R. Mothes, H. Lang, W.-B. Cai, Chem. Commun. 2011, 47, 11924.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKgtrnF&md5=876d023ddb3224e599f0a932f3164808CAS |
[10] H.-Y. Lü, S.-H. Yang, J. Deng, Z.-H. Zhang, Aust. J. Chem. 2010, 63, 1290.
| Crossref | GoogleScholarGoogle Scholar |
[11] W. Wang, F. Wang, Y. Kang, A. Wang, RSC Adv 2013, 3, 11515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVarurjP&md5=818edb6ddd907edb7e5fc468ed5dfd20CAS |
[12] B. Li, B. Sun, X. Qian, W. Li, Z. Wu, Z. Sun, M. Qiao, M. Duke, D. Zhao, J. Am. Chem. Soc. 2013, 135, 1181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVWmsQ%3D%3D&md5=cba1bc84acd98bbf12b3a9047f31936eCAS | 23286838PubMed |
[13] M. B. Gawande, P. S. Branco, R. S. Varma, Chem. Soc. Rev. 2013, 42, 3371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFemsLw%3D&md5=c8276bad38aebe4f75c45fb171ffc60bCAS | 23420127PubMed |
[14] R. Abu-Reziq, D. Wang, M. Post, H. Alper, Adv. Synth. Catal. 2007, 349, 2145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCnt7bP&md5=97aae886ca65e2c94e08344bdd921ce1CAS |
[15] K. V. S. Ranganath, A. H. Schäfer, F. Glorius, ChemCatChem 2011, 3, 1889.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2lu7rI&md5=2e7c54a2ef4483dd347fa4af5ce1856fCAS |
[16] K. V. S. Ranganath, S. Onitsuka, A. K. Kumar, J. Inanaga, Catal. Sci. Technol. 2013, 3, 2161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WltL3N&md5=4844b55b8f30d7b40b0a9f1c314dba80CAS |
[17] P. N. Minoofar, R. Hernandez, S. Chia, B. Dunn, J. I. Zink, A.-C. Franville, J. Am. Chem. Soc. 2002, 124, 14388.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFWhsLc%3D&md5=5d3ad7c1da45a43d35e47ac732819e8aCAS | 12452713PubMed |
[18] S. Fujita, S. Inagaki, Chem. Mater. 2008, 20, 891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFKjtA%3D%3D&md5=b3aad79011310c38c0afea4f6727248cCAS |
[19] Z. W. Seh, S. Liu, S.-Y. Zhang, K. W. Shah, M.-Y. Han, Chem. Commun. 2011, 47, 6689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVGrur0%3D&md5=e1f5a56520f8d1184ef7b771960f8dc5CAS |
[20] Z. W. Seh, S. Liu, S.-Y. Zhang, M. S. Bharathi, H. Ramanarayan, M. Low, K. W. Shah, Y.-W. Zhang, M.-Y. Han, Angew. Chem. Int. Ed. 2011, 50, 10140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKhs7rM&md5=fd85475be609f260f535d3cb5f4fa97dCAS |
[21] S.-Q. Bai, T. S. A. Hor, Chem. Commun. 2008, 3172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFegtbY%3D&md5=eae43c3e6920042ee9d70f64e35d036eCAS |
[22] S.-Q. Bai, L. L. Koh, T. S. A. Hor, Inorg. Chem. 2009, 48, 1207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVWnuw%3D%3D&md5=5e8ef9f520bea9e5e2446cc3626be50aCAS | 19123783PubMed |
[23] S.-Q. Bai, L. Jiang, J.-L. Zuo, T. S. A. Hor, Dalton Trans. 2013, 42, 11319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWktrbJ&md5=82fc765466dcecf36d853aee907a9f7fCAS | 23817835PubMed |
[24] S.-L. Huang, Y.-J. Lin, T. S. A. Hor, G.-X. Jin, J. Am. Chem. Soc. 2013, 135, 8125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVCqsbw%3D&md5=f0496d6ec225dc279b7a4f51f24cbee6CAS | 23678944PubMed |
[25] J. Jia, R. Wang, H. Wang, S. Ji, J. Key, V. Linkov, K. Shi, Z. Lei, Catal. Commun. 2011, 16, 60.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyjsrbJ&md5=aeacaaf08b73ef1690212f70f7ba19e0CAS |
[26] J. Lee, J. C. Park, H. Song, Adv. Mater. 2008, 20, 1523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFent7Y%3D&md5=c67c793c4a6cea6d48098445b9ffa671CAS |
[27] S. Praharaj, S. Nath, S. K. Ghosh, S. Kundu, T. Pal, Langmuir 2004, 20, 9889.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlKkur8%3D&md5=8843f720112e333b025023a65b7c782fCAS | 15518467PubMed |
[28] H.-Q. Wang, X. Wei, K.-X. Wang, J.-S. Chen, Dalton Trans. 2012, 41, 3204.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVyjtL4%3D&md5=0f4311ac6d4ca6da15effd9ded359ed5CAS | 22290363PubMed |
[29] S. Li, W. Zhang, M.-H. So, C.-M. Che, R. Wang, R. Chen, J. Mol. Catal. A Chem. 2012, 359, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFegsL4%3D&md5=aef5d9b9a995b24c1ccedc7125aa25b1CAS |
[30] W. Sun, Q. Li, S. Gao, J. K. Shang, Appl. Catal. B: Environmental 2012, 125, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCmtr3I&md5=96069894b7dbdcd2c19a3c33e4c60467CAS |