Fluorogenic Quantification of Albumin
Michelle Low A , Khin Yin Win A , Enyi Ye A , Shuhua Liu A , Soon Huat Ng B , Xiaoqun Zhou B and Ming-Yong Han A CA Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore 117602.
B Institute for Infocomm Research, A*STAR, 1 Fusionopolis Way, Singapore 138632.
C Corresponding author. Email: my-han@imre.a-star.edu.sg
Australian Journal of Chemistry 67(10) 1382-1386 https://doi.org/10.1071/CH14083
Submitted: 18 February 2014 Accepted: 14 March 2014 Published: 8 May 2014
Abstract
By optimising various fluorogenic dyes, non-fluorescent fluorescamine can react with primary amines to form highly fluorescent products, which is a simple, fast, and sensitive method for the quantification of albumin. The effects of pH, temperature, and chemicals were studied systematically to quantify albumin. The quantification method is more sensitive at alkaline pHs, affording measurement of proteins concentrations as low as 15 µg mL–1. Denaturation of albumin at elevated temperatures and/or use of chemicals, such as ethanol and acetone, can greatly improve the sensitivity of the albumin detection method. The simple, accurate, and reliable analysis of albumin contents under favourable conditions can be developed as an important method for early diagnosis of kidney disease.
References
[1] Centers for Disease Control and Prevention, National Chronic Kidney Disease Fact Sheet: General Information and National Estimates on Chronic Kidney Disease in the United States. 2012. Available at http://www.cdc.gov/diabetes/pubs/pdf/kidney_factsheet.pdf (accessed 9 October 2013).[2] A. Vathsala, Ann. Acad. Med. Singap. 2007, 36, 157.
| 1:STN:280:DC%2BD2s3ktFGrsw%3D%3D&md5=6d364970dbd01d1d42508a8b43e0b225CAS | 17450258PubMed |
[3] W. G. Couser, G. Remuzzi, S. Mendis, M. Tonelli, Kidney Int. 2011, 80, 1258.
| Crossref | GoogleScholarGoogle Scholar | 21993585PubMed |
[4] K. Y. Win, C. P. Teng, M. B. J. Low, E. Ye, N. C. Tansil, M. Y. Han, Analyst 2012, 137, 2328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFSqtLw%3D&md5=bb8fc53bfedd0b5d89aa5fed587ca6f8CAS | 22407159PubMed |
[5] S. De Bernardo, M. Weigele, V. Toome, K. Manhart, W. Leimgruber, P. Böhlen, S. Stein, S. Udenfriend, Arch. Biochem. Biophys. 1974, 163, 390.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlsVGnur4%3D&md5=7ceeb82532867542a5cf4098e4fbfdd9CAS | 4859505PubMed |
[6] X. Chen, J. Wang, Talanta 2006, 69, 681.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1yjur0%3D&md5=c6ca6ba934d3ac38c5f761f6d4eabca2CAS | 18970622PubMed |
[7] M. A. Bridges, K. M. McErlane, E. Kwong, S. Katz, D. A. Applegarth, Clin. Chim. Acta 1986, 157, 73.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XkvFeqtrY%3D&md5=5f5d58a29b824c26994300416beac7c8CAS | 2941185PubMed |
[8] G. M. Funk, C. E. Hunt, D. E. Epps, P. K. Brown, J. Lipid Res. 1986, 27, 792.
| 1:CAS:528:DyaL28Xls1ygsrs%3D&md5=e1de229f99642e6c3a3a8a1e4a0e8b18CAS | 3760715PubMed |
[9] A. Lorenzen, S. W. Kennedy, Anal. Biochem. 1993, 214, 346.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1Gksbc%3D&md5=1f25e6c9eb380807469d395b67274fefCAS | 8250247PubMed |
[10] A. V. Waller, K. M. Ward, J. D. Mahan, D. K. Wismatt, Clin. Chem. 1989, 35, 755.
| 1:CAS:528:DyaL1MXktlOitL4%3D&md5=1e238ceab93b5cebae513b18876e3145CAS |
[11] T. Bantan-Polak, M. Kassai, K. B. Grant, Anal. Biochem. 2001, 297, 128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslWgs70%3D&md5=67c8529de5e50c05c9849d9932487674CAS | 11673879PubMed |
[12] L. A. McElderry, I. F. Tarbit, A. J. Cassells-Smith, Clin. Chem. 1982, 28, 356.
| 1:CAS:528:DyaL38XhsFymu78%3D&md5=41d489c929a54030113bc40ef5a7ed54CAS | 7055959PubMed |
[13] B. A. Dilena, L. A. Penberthy, C. G. Fraser, Clin. Chem. 1983, 29, 553.
| 1:CAS:528:DyaL3sXhsVSjs70%3D&md5=d967b19504686a5cf75bf8ea32187b09CAS | 6825271PubMed |
[14] Uptima, Hydrazine chemistry reagents SANH/SHNH/SHTH, MHPH/MTFB, SFB. Available at http://www.interchim.fr/ft/B/BL9270.pdf (accessed 16 November 2013).
[15] L. Zhang, E. S. Yeung, J. Chromatogr. A 1996, 734, 331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVOqur4%3D&md5=13f37510fe14444ffe79932947790e27CAS |
[16] K. Go, Y. Horikawa, R. Garcia, F. J. Villarreal, J. Biochem. Biophys. Methods 2008, 70, 878.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVOgu78%3D&md5=c0a91dfb1f6cd938ac4f7792f882746aCAS | 17573117PubMed |
[17] S. S. Simons, D. F. Johnson, Anal. Biochem. 1978, 90, 705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXmvVOjug%3D%3D&md5=7e5a6392376b5fc8047b36a0063b6aebCAS |
[18] O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, J. Biol. Chem. 1951, 193, 265.
| 1:CAS:528:DyaG38XhsVyrsw%3D%3D&md5=d91e782af97f4c57265bf6c5eea942abCAS | 14907713PubMed |
[19] B. R. Shmaefsky, Am. Biol. Teach. 1990, 52, 170.
| Crossref | GoogleScholarGoogle Scholar |